
MATLAB® Coder™

Getting Started Guide

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Coder™ Getting Started Guide

© COPYRIGHT 2011–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 2011 Online only New for R2011a
September 2011 Online only Revised for Version 2.1 (Release 2011b)
March 2012 Online only Revised for Version 2.2 (Release 2012a)
September 2012 Online only Revised for Version 2.3 (Release 2012b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs tool
with the search phrase ‘‘Incorrect Code Generation’’ to obtain a report of known bugs that
produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies between
the actual behavior of a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Contents

Product Overview

1
Product Description . 1-2
Key Features . 1-2

About MATLAB Coder . 1-3
When to Use MATLAB Coder . 1-3
What You Can Do with the Project Interface 1-3
When to Use the Command Line (codegen function) 1-4

Code Generation for Embedded Software
Applications . 1-5

Code Generation for Fixed-Point Algorithms 1-6

Installing Prerequisite Products . 1-7

Related Products . 1-8

Setting Up the C/C++ Compiler . 1-9

Expected Background . 1-10

Workflow Overview . 1-11
See Also . 1-11

Tutorials

2
C Code Generation Using the Project Interface 2-2

v

Learning Objectives . 2-2
Tutorial Prerequisites . 2-2
Example: The Kalman Filter . 2-3
Files for the Tutorial . 2-6
Design Considerations When Writing MATLAB Code for
Code Generation . 2-7

Tutorial Steps . 2-9
Key Points to Remember . 2-33
Learn More . 2-33

C Code Generation at the Command Line 2-35
Learning Objectives . 2-35
Tutorial Prerequisites . 2-35
Example: The Kalman Filter . 2-36
Files for the Tutorial . 2-39
Design Considerations When Writing MATLAB Code for
Code Generation . 2-41

Tutorial Steps . 2-42
Key Points to Remember . 2-63
Best Practices Used in This Tutorial 2-64
Where to Learn More . 2-64

MEX Function Generation at the Command Line 2-66
Learning Objectives . 2-66
Tutorial Prerequisites . 2-66
Example: Euclidean Minimum Distance 2-67
Files for the Tutorial . 2-69
Tutorial Steps . 2-71
Key Points to Remember . 2-89
Best Practices Used in This Tutorial 2-90
Where to Learn More . 2-90

Best Practices for Working with MATLAB Coder

3
Recommended Compilation Options for codegen 3-2
-c Generate Code Only . 3-2
-report Generate Code Generation Report 3-2

vi Contents

Testing MEX Functions in MATLAB 3-3

Comparing C Code and MATLAB Code Using Tiling in
the MATLAB Editor . 3-4

Using Build Scripts . 3-5

Check Code Using the MATLAB Code Analyzer 3-7

Separating Your Test Bench from Your Function
Code . 3-8

Preserving Your Code . 3-9

File Naming Conventions . 3-10

Examples

A
Getting Started . A-2

Index

vii

viii Contents

1

Product Overview

• “Product Description” on page 1-2

• “About MATLAB® Coder™” on page 1-3

• “Code Generation for Embedded Software Applications” on page 1-5

• “Code Generation for Fixed-Point Algorithms” on page 1-6

• “Installing Prerequisite Products” on page 1-7

• “Related Products” on page 1-8

• “Setting Up the C/C++ Compiler” on page 1-9

• “Expected Background” on page 1-10

• “Workflow Overview” on page 1-11

1 Product Overview

Product Description
Generate C and C++ code from MATLAB® code

MATLAB Coder™ generates standalone C and C++ code from MATLAB code.
The generated source code is portable and readable. MATLAB Coder supports
a subset of core MATLAB language features, including program control
constructs, functions, and matrix operations. It can generate MEX functions
that let you accelerate computationally intensive portions of MATLAB code
and verify the behavior of the generated code.

Key Features

• ANSI/ISO compliant C and C++ code generation

• MEX function generation for fixed-point and floating-point math

• Project management tool for specifying entry points, input data properties,
and other code-generation configuration options

• Static or dynamic memory allocation for variable-size data

• Code generation support for many functions and System objects in
Communications System Toolbox™, DSP System Toolbox™, and Computer
Vision System Toolbox™

• Support for common MATLAB language features, including matrix
operations, subscripting, program controls statements (if, switch, for,
while), and structures

1-2

About MATLAB® Coder™

About MATLAB Coder

When to Use MATLAB Coder
Use MATLAB Coder to:

• Generate readable, efficient, standalone C/C++ code from MATLAB code.

• Generate MEX functions from MATLAB code to:

- Accelerate your MATLAB algorithms.

- Verify generated C code within MATLAB.

• Integrate custom C/C++ code into MATLAB.

What You Can Do with the Project Interface
• Specify the MATLAB files from which you want to generate code

• Specify the data types for the inputs to these MATLAB files

• Select an output type:

- MEX function

- C/C++ Static Library

- C/C++ Dynamic Library

- C/C++ Executable

• Configure build settings to customize your environment for code generation

• Open the code generation report to view build status, generated code,
and compile-time information for the variables and expressions in your
MATLAB code

See Also

• “MATLAB Coder Project Set Up Workflow”

• “C Code Generation Using the Project Interface” on page 2-2

1-3

1 Product Overview

When to Use the Command Line (codegen function)
Use the command line if you use build scripts to specify input parameter
types and code generation options.

See Also

• The codegen function reference page

• “C Code Generation at the Command Line” on page 2-35

• “MEX Function Generation at the Command Line” on page 2-66

1-4

Code Generation for Embedded Software Applications

Code Generation for Embedded Software Applications
The Embedded Coder® product extends the MATLAB Coder product with
features that are important for embedded software development. Using the
Embedded Coder add-on product, you can generate code that has the clarity
and efficiency of professional handwritten code. For example, you can:

• Generate code that is compact and fast, which is essential for real-time
simulators, on-target rapid prototyping boards, microprocessors used in
mass production, and embedded systems.

• Customize the appearance of the generated code.

• Optimize the generated code for a specific target environment.

• Enable tracing options that help you to verify the generated code.

• Generate reusable, reentrant code.

1-5

1 Product Overview

Code Generation for Fixed-Point Algorithms
Using the Fixed-Point Toolbox™ product, you can generate:

• MEX functions to accelerate fixed-point algorithms.

• Fixed-point code that provides a bit-wise match to MEX function results.

1-6

Installing Prerequisite Products

Installing Prerequisite Products
To generate C/C++ code using MATLAB Coder, you must install the following
products:

• MATLAB

Note If MATLAB is installed on a path that contains non 7-bit ASCII
characters, such as Japanese characters, MATLAB Coder might not work
because it cannot locate code generation library functions.

• MATLAB Coder

• C/C++ compiler

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

You must set up the compiler before generating code. See “Setting Up the
C/C++ Compiler” on page 1-9.

For instructions on installing MathWorks® products, see the MATLAB
installation documentation for your platform. If you have installed MATLAB
and want to check which other MathWorks products are installed, enter ver
in the MATLAB Command Window.

1-7

1 Product Overview

Related Products
• Embedded Coder

• Simulink® Coder

1-8

Setting Up the C/C++ Compiler

Setting Up the C/C++ Compiler
Before using MATLAB Coder, you must set up your C/C++ compiler by
running the mex -setup command, as described in the documentation for
mex in the MATLAB Function Reference. You must run this command even
if you use the default C compiler that comes with the MATLAB product for
Microsoft® Windows® platforms. You can also use mex to choose and configure
a different C/C++ compiler, as described in “Build MEX-Files” in the MATLAB
External Interfaces documentation.

1-9

1 Product Overview

Expected Background
You should be familiar with :

• MATLAB software

• MEX functions

For more information, see “Introducing MEX-Files” in the MATLAB
External Interfaces documentation.

• C/C++ programming concepts

To generate C code on embedded targets, you should also be familiar with how
to re-compile the generated code in the target environment.

To integrate the generated code into external applications, you should be
familiar with the C/C++ compilation and linking process.

1-10

Workflow Overview

Workflow Overview

See Also

• “MATLAB Coder Project Set Up Workflow”

• “Workflow for Preparing MATLAB Code for Code Generation”

• “Workflow for Testing MEX Functions in MATLAB”

• “Code Generation Workflow”

• “Workflow for Accelerating MATLAB Algorithms”

• “Code Optimization”

• “Accelerate MATLAB Algorithms”

1-11

1 Product Overview

1-12

2

Tutorials

• “C Code Generation Using the Project Interface” on page 2-2

• “C Code Generation at the Command Line” on page 2-35

• “MEX Function Generation at the Command Line” on page 2-66

2 Tutorials

C Code Generation Using the Project Interface

In this section...

“Learning Objectives” on page 2-2

“Tutorial Prerequisites” on page 2-2

“Example: The Kalman Filter” on page 2-3

“Files for the Tutorial” on page 2-6

“Design Considerations When Writing MATLAB Code for Code Generation”
on page 2-7

“Tutorial Steps” on page 2-9

“Key Points to Remember” on page 2-33

“Learn More” on page 2-33

Learning Objectives
In this tutorial, you will learn how to:

• Create and set up a MATLAB Coder project.

• Automatically generate a MEX function from your MATLAB code and
use this MEX function to validate your algorithm in MATLAB before
generating C code.

• Automatically generate C code from your MATLAB code.

• Define function input properties.

• Specify variable-size inputs when generating code.

• Specify code generation properties.

• Generate a code generation report that you can use to debug your MATLAB
code and verify that it is suitable for code generation.

Tutorial Prerequisites

• “What You Need to Know” on page 2-3

• “Required Products” on page 2-3

2-2

C Code Generation Using the Project Interface

What You Need to Know
To complete this tutorial, you should have basic familiarity with MATLAB
software.

Required Products
To complete this tutorial, you must install the following products:

• MATLAB

• MATLAB Coder

• C compiler (for most platforms, a default C compiler is supplied with
MATLAB)

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

You must set up the C compiler before generating C code. See “Setting Up
Your C Compiler” on page 2-45.

For instructions on installing MathWorks products, see the MATLAB
installation documentation for your platform. If you have installed MATLAB
and want to check which other MathWorks products are installed, enter ver
in the MATLAB Command Window.

Example: The Kalman Filter

• “Description” on page 2-3

• “Algorithm” on page 2-4

• “Filtering Process” on page 2-5

• “Reference” on page 2-6

Description
This section describes the example used by the tutorial. You do not have to be
familiar with the algorithm to complete the tutorial.

2-3

2 Tutorials

The example for this tutorial uses a Kalman filter to estimate the position
of an object moving in a two-dimensional space from a series of noisy inputs
based on past positions. The position vector has two components, x and y,
indicating its horizontal and vertical coordinates.

Kalman filters have a wide range of applications, including control, signal
and image processing; radar and sonar; and financial modeling. They are
recursive filters that estimate the state of a linear dynamic system from a
series of incomplete or noisy measurements. The Kalman filter algorithm
relies on the state-space representation of filters and uses a set of variables
stored in the state vector to characterize completely the behavior of the
system. It updates the state vector linearly and recursively using a state
transition matrix and a process noise estimate.

Algorithm
This section describes the algorithm of the Kalman filter and is implemented
in the MATLAB version of the filter supplied with this tutorial.

The algorithm predicts the position of a moving object based on its past
positions using a Kalman filter estimator. It estimates the present position
by updating the Kalman state vector, which includes the position (x and y),
velocity (Vx and Vy), and acceleration (Ax and Ay) of the moving object. The
Kalman state vector, x_est, is a persistent variable.

% Initial conditions
persistent x_est p_est
if isempty(x_est)

x_est = zeros(6, 1);
p_est = zeros(6, 6);

end

x_est is initialized to an empty 6x1 column vector and updated each time
the filter is used.

The Kalman filter uses the laws of motion to estimate the new state:

2-4

C Code Generation Using the Project Interface

X X Vx dt

Y Y Vy dt

Vx Vx Ax dt

Vy Vy Ay dt

= +
= +
= +
= +

0

0

0

0

.

.

.

.

These laws of motion are captured in the state transition matrix A, which is a
matrix that contains the coefficient values of x, y, Vx, Vy, Ax, and Ay.

% Initialize state transition matrix
dt=1;
A=[1 0 dt 0 0 0;...

0 1 0 dt 0 0;...
0 0 1 0 dt 0;...
0 0 0 1 0 dt;...
0 0 0 0 1 0 ;...
0 0 0 0 0 1];

Filtering Process
The filtering process has two phases:

• Predicted state and covariance

The Kalman filter uses the previously estimated state, x_est, to predict the
current state, x_prd. The predicted state and covariance are calculated in:

% Predicted state and covariance
x_prd = A * x_est;
p_prd = A * p_est * A' + Q;

• Estimation

The filter also uses the current measurement, z, and the predicted state,
x_prd, to estimate a closer approximation of the current state. The
estimated state and covariance are calculated in:

% Measurement matrix
H = [1 0 0 0 0 0; 0 1 0 0 0 0];
Q = eye(6);
R = 1000 * eye(2);

% Estimation

2-5

2 Tutorials

S = H * p_prd' * H' + R;
B = H * p_prd';
klm_gain = (S \ B)';

% Estimated state and covariance
x_est = x_prd + klm_gain * (z - H * x_prd);
p_est = p_prd - klm_gain * H * p_prd;

% Compute the estimated measurements
y = H * x_est;

Reference
Haykin, Simon. Adaptive Filter Theory. Upper Saddle River, NJ:
Prentice-Hall, Inc., 1996.

Files for the Tutorial

• “About the Tutorial Files” on page 2-6

• “Location of Files” on page 2-7

• “Names and Descriptions of Files” on page 2-7

About the Tutorial Files
The tutorial uses the following files:

• Example MATLAB code files for each step of the tutorial.

Throughout this tutorial, you work with MATLAB files that contain a
simple Kalman filter algorithm.

• Build scripts that you use to compile your function code.

• Test files that:

- Perform the preprocessing functions.

- Call the Kalman filter.

- Perform the post-processing functions.

• A MAT-file that contains input data.

2-6

C Code Generation Using the Project Interface

Location of Files
The tutorial files are available in the following folder:
docroot\toolbox\coder\examples\kalman. To run the tutorial,
you must copy these files to a local folder. For instructions, see “Copying
Files Locally” on page 2-43.

Names and Descriptions of Files

Type Name Description

kalman01.m Baseline MATLAB implementation of a
scalar Kalman filter.

kalman02.m Version of the original algorithm that is
suitable for code generation.

Function
code

kalman03.m Kalman filter suitable for use with
frame-based and packet-based inputs.

test01_ui.m Tests the scalar Kalman filter and plots
the trajectory.

test02_ui.m Tests the frame-based Kalman filter.

Test
scripts

test03_ui.m Tests the variable-size (packet-based)
Kalman filter.

MAT-file position.mat Contains the input data used by the
algorithm.

Plot
function

plot_trajectory.m Plots the trajectory of the object and the
Kalman filter estimated position.

Design Considerations When Writing MATLAB Code
for Code Generation
When writing MATLAB code that you want to convert into efficient,
standalone C/C++ code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before
use, MATLAB Coder requires a complete assignment to each variable.

2-7

2 Tutorials

• Array sizing

Variable-size arrays and matrices are supported for code generation. You
can define inputs, outputs, and local variables in MATLAB functions to
represent data that varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory
allocation.

With dynamic memory allocation, you potentially use less memory at the
expense of time to manage the memory. With static memory, you get best
speed performance, but with higher memory usage. Most MATLAB code
takes advantage of the dynamic sizing features in MATLAB, therefore
dynamic memory allocation typically enables you to generate code from
existing MATLAB code without modifying it much. Dynamic memory
allocation also allows some programs to compile even when upper bounds
cannot be found.

Static allocation reduces the memory footprint of the generated code, and
therefore is suitable for applications where there is a limited amount of
available memory, such as embedded applications.

• Speed

Because embedded applications must run in real time, the code must be
fast enough to meet the required clock rate.

To improve the speed of the generated code:

- Choose a suitable C/C++ compiler. The default compiler that MathWorks
supplies with MATLAB for Windows 32-bit platforms is not a good
compiler for performance.

- Consider disabling run-time checks.

By default, for safety, the code generated for your MATLAB code
contains memory integrity checks and responsiveness checks. Generally,
these checks result in more generated code and slower simulation.
Disabling run-time checks usually results in streamlined generated code
and faster simulation. Disable these checks only if you have verified that
array bounds and dimension checking is unnecessary.

2-8

C Code Generation Using the Project Interface

See Also

• “Data Definition Basics”

• “Variable-Size Data”

• “Bounded Versus Unbounded Variable-Size Data”

• “Control Dynamic Memory Allocation”

• “Control Run-Time Checks”

Tutorial Steps

• “Copying Files Locally” on page 2-9

• “Running the Original MATLAB Code” on page 2-10

• “Setting Up Your C Compiler” on page 2-12

• “Considerations for Making Your Code Suitable for Code Generation” on
page 2-13

• “Making the MATLAB Code Suitable for Code Generation” on page 2-14

• “Setting Up a MATLAB® Coder™ Project” on page 2-16

• “Generating a MEX Function Using MATLAB® Coder™” on page 2-19

• “Verifying the MEX Function Behavior” on page 2-19

• “Generating C Code Using MATLAB® Coder™” on page 2-21

• “Comparing the Generated C Code to Original MATLAB Code” on page 2-22

• “Modifying the Filter to Accept a Fixed-Size Input” on page 2-23

• “Using the Filter to Accept a Variable-Size Input” on page 2-29

Copying Files Locally
Copy the tutorial files to a local working folder:

1 Create a local solutions folder, for example, c:\coder\kalman\solutions.

2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB
command line, enter:

2-9

2 Tutorials

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the contents of the kalman subfolder to your local solutions folder,
specifying the full path name of the solutions folder:

copyfile('kalman', 'solutions')

Your solutions folder now contains a complete set of solutions for the
tutorial. If you do not want to perform the steps for each task in the
tutorial, you can view the solutions to see how the code should look.

4 Create a local work folder, for example, c:\coder\kalman\work.

5 Copy the following files from your solutions folder to your work folder.

• kalman01.m

• position.mat

• Test scripts test01_ui.m through test03_ui.m

• plot_trajectory.m

Your work folder now contains all the files that you need to get started
with the tutorial.

Running the Original MATLAB Code
In this tutorial, you work with a MATLAB function that implements a Kalman
filter algorithm, which predicts the position of a moving object based on its
past positions. Before generating C code for this algorithm, you make the
MATLAB version suitable for code generation and generate a MEX function.
Then you test the resulting MEX function to validate the functionality of the
modified code. As you work through the tutorial, you refine the design of the
algorithm to accept variable-size inputs.

First, use the script test01_ui.m to run the original MATLAB function to
see how the Kalman filter algorithm works. This script loads the input data
and calls the Kalman filter algorithm to estimate the location. It then calls a
plot function, plot_trajectory, which plots the trajectory of the object and
the Kalman filter estimated position.

2-10

C Code Generation Using the Project Interface

1 Set your MATLAB current folder to the work folder that contains your files
for this tutorial. At the MATLAB command line, enter:

cd work

where work is the full path name of the work folder containing your files.
For more information, see “Using the Current Folder Browser”.

2 At the MATLAB command line, enter:

test01_ui

The test script runs and plots the trajectory of the object in blue and the
Kalman filter estimated position in green. Initially, you see that it takes a
short time for the estimated position to converge with the actual position
of the object. Then three sudden shifts in position occur—each time the
Kalman filter readjusts and tracks the object after a few iterations.

2-11

2 Tutorials

Setting Up Your C Compiler
Before using MATLAB Coder to compile the Kalman filter example code,
you must set up your C compiler. For most platforms, MathWorks supplies
a default compiler with MATLAB. If your installation does not include a
default compiler, for a list of supported compilers for the current release of
MATLAB, see http://www.mathworks.com/support/compilers/current_release/
and install a compiler that is suitable for your platform.

To set up the installed compiler:

1 At the MATLAB command line, enter:

2-12

C Code Generation Using the Project Interface

mex -setup

2 Enter y to see the list of installed compilers.

3 Select a supported compiler.

4 Enter y to verify your choice.

Considerations for Making Your Code Suitable for Code
Generation

Designing for Code Generation. Before generating code, you must
prepare your MATLAB code for code generation. The first step is to eliminate
unsupported constructs.

Checking for Violations at Design Time. There are two tools that help
you detect code generation issues at design time: the code analyzer and the
code generation readiness tool.

You use the code analyzer in the MATLAB Editor to check for code
violations at design time, minimizing compilation errors. The code analyzer
continuously checks your code as you enter it. It reports problems and
recommends modifications to maximize performance and maintainability.

To use the code analyzer to identify warnings and errors specific to MATLAB
for code generation, you must add the %#codegen directive (or pragma) to
your MATLAB file. A complete list of MATLAB for Code Generation code
analyzer messages is available in the MATLAB Code Analyzer preferences.
See “Running the Code Analyzer Report” for more details.

Note The code analyzer might not detect all MATLAB for code generation
issues. After eliminating any errors or warnings that the code analyzer
detects, compile your code with MATLAB Coder to determine if the code has
other compliance issues.

The code generation readiness tool screens MATLAB code for features and
functions that are not supported for code generation. The tool provides a
report that lists the source files that contain unsupported features and

2-13

2 Tutorials

functions and an indication of how much work is needed to make the MATLAB
code suitable for code generation.

You can access the code generation readiness tool in the following ways:

• In the current folder browser — by right-clicking a MATLAB file

• At the command line — by using the coder.screener function.

• In a project — when you add a MATLAB file to a project, if MATLAB Coder
detects code generation issues, it provides a link to the code generation
readiness report. For more information, see “Code Generation Readiness
Tool”.

Checking for Violations at Code Generation Time. You can use
MATLAB Coder to check for violations at code generation time. MATLAB
Coder checks that your MATLAB code is suitable for code generation.

When MATLAB Coder detects errors or warnings, it automatically generates
an error report that describes the issues and provides links to the offending
MATLAB code. For more information, see “Code Generation Reports”.

After code generation, MATLAB Coder generates a MEX function that you
can use to test your implementation in MATLAB.

Checking for Violations at Run Time. You can use MATLAB Coder to
generate a MEX function and check for violations at run time. The MEX
function generated for your MATLAB functions includes run-time checks.
Disabling run-time checks and extrinsic calls usually results in streamlined
generated code and faster simulation. Disabling run-time checks allows bugs
in your code to crash MATLAB. For more information, see “Control Run-Time
Checks”.

If you encounter run-time errors in your MATLAB functions, a run-time stack
appears automatically in the MATLAB Command Window. See “Debug
Run-Time Errors”.

Making the MATLAB Code Suitable for Code Generation

• “Making Your Code Suitable for Code Generation” on page 2-15

2-14

C Code Generation Using the Project Interface

• “Where to Go Next” on page 2-16

Making Your Code Suitable for Code Generation. To modify the code
yourself, work through the exercises in this section. Otherwise, open the
supplied file kalman02.m in your solutions subfolder to see the modified
algorithm.

To begin the process of making your MATLAB code suitable for code
generation, you work with the file kalman01.m. This code is a MATLAB
version of a scalar Kalman filter that estimates the state of a dynamic system
from a series of noisy measurements.

1 Set your MATLAB current folder to the work folder that contains your files
for this tutorial. At the MATLAB command line, enter:

cd work

where work is the full path name of the work folder containing your files.
See “Using the Current Folder Browser”.

2 Open kalman01.m in the MATLAB Editor. At the MATLAB command
line, enter:

edit kalman01.m

Tip Before modifying your code, it is best practice to preserve the current
version by backing it up.

The file opens in the MATLAB Editor. The code analyzer message indicator
in the top right corner of the MATLAB Editor is green, which indicates that
it has not detected any errors, warnings, or opportunities for improvement
in the code.

3 Turn on MATLAB for code generation error checking by adding the
%#codegen directive after the function declaration.

function y = kalman01(z) %#codegen

2-15

2 Tutorials

The code analyzer message indicator remains green, indicating that it has
not detected any code generation related issues.

For more information on using the code analyzer, see “Running the Code
Analyzer Report”.

4 Save the file.

You are now ready to compile your code using MATLAB Coder. By default,
MATLAB Coder checks that your MATLAB code is suitable for code
generation. Then, after compilation, it generates a MEX function that
you can test in MATLAB.

Where to Go Next. The next part of the tutorial, “Setting Up a MATLAB®
Coder™ Project” on page 2-16, shows you how to set up a MATLAB Coder
project.

Setting Up a MATLAB Coder Project

1 In MATLAB, select the Apps tab and then click MATLAB Coder.

2 The Code Generation Project dialog box opens.

3 In this dialog box, enter a name for the project, for example, kalman_filter,
and click OK.

2-16

C Code Generation Using the Project Interface

MATLAB Coder creates the project, kalman_filter.prj, in the current
folder and, by default, opens the project in the right side of the MATLAB
workspace.

You are now ready to add the kalman01.m file to your project.

4 On the MATLAB Coder project Overview tab, click Add files.

5 In the Add Files dialog box, select kalman01.m and click Open.

MATLAB Coder adds the file to the project. kalman01 function has one
input parameter, z, which appears below the file name. Note that its type
is undefined.

6 Because C uses static typing, MATLAB Coder must determine the
properties of all variables in the MATLAB files at compile time. Therefore,
you must specify the properties of all function inputs at the same time as
you compile the file. To compile kalman01.m, you must specify the size of
the input vector z. Here, you specify a test file so that MATLAB Coder
can autodefine types for z :

2-17

2 Tutorials

a Click the Autodefine types link.

b In the Autodefine Entry-Point Input Types dialog box, click the
button to add a test file to the project.

c Select test01_ui.m and click Open.

The test file, test01_ui.m, calls the entry-point function, kalman01.m,
with the expected input types. For more information on using test files
to autodefine input types, see “Autodefine Input Types”.

d In the Autodefine Entry-Point Input Types dialog box, click the
Run button.

The test file runs, plots the output, and infers that input z is
double(2x1).

e Click Use These Types.

MATLAB Coder assigns this type to z.

2-18

C Code Generation Using the Project Interface

You are now ready to build the project to generate a MEX function for
kalman01.m.

Generating a MEX Function Using MATLAB Coder

1 Click the MATLAB Coder project Build tab.

By default, the project will generate a MEX function named kalman01_mex.

Note For the purpose of this tutorial, use the default build settings. To
fine tune the MEX code generation, you can click More settings to open
the Project Settings dialog box and configure build settings.

2 Click the Build button.

The Build progress dialog box appears. When the build is complete,
MATLAB Coder generates a MEX function kalman01_mex in the current
folder.

Note The file extension is platform dependent.

You have proved that the Kalman filter example code is suitable for code
generation using MATLAB Coder. You are ready to begin the next task in
this tutorial, “Verifying the MEX Function” on page 2-51.

Verifying the MEX Function Behavior
In this part of the tutorial, you test the MEX function to verify that it provides
the same functionality as the original MATLAB code.

In addition, simulating your algorithm in MATLAB before generating C code
enables you to detect and fix run-time errors that would be much harder to
diagnose in the generated C code. By default, the following run-time checks
execute when you simulate your MEX function in MATLAB:

2-19

2 Tutorials

• Memory integrity checks. These checks perform array bounds and
dimension checking and detect violations of memory integrity in code
generated for MATLAB functions. If a violation is detected, MATLAB stops
execution with a diagnostic message.

• Responsiveness checks in code generated for MATLAB functions. These
checks enable periodic checks for Ctrl+C breaks in code generated for
MATLAB functions, allowing you to terminate execution with Ctrl+C at
any time.

For more information, see “Control Run-Time Checks”.

Running the Generated MEX Function. You run the MEX function,
kalman01_mex, using the same test file that you used in “Running the Original
MATLAB Code” on page 2-44. The MATLAB Coder software automatically
replaces calls to the MATLAB algorithm with calls to the MEX function.

1 On the Build tab Verification pane, verify that the Test file is set to
test01_ui.m.

2 On the Verification pane, clear Rebuild MEX function.

Because you have just built the MEX function, you do not need to rebuild it.

3 Select Redirect entry-point calls to MEX function.

4 Click Run.

MATLAB Coder runs the test file and automatically replaces calls to the
MATLAB algorithm with calls to the MEX function. The test runs and
plots the trajectory of the object and the Kalman filter estimated position
as before.

You have generated a MEX function for your MATLAB code, verified that it
is functionally equivalent to your original MATLAB code, and checked that
no run-time errors occur. Now you are ready to begin the next task in this
tutorial, “Generating C Code Using codegen” on page 2-52.

2-20

C Code Generation Using the Project Interface

Generating C Code Using MATLAB Coder
In this task, you use MATLAB Coder to generate C code for your MATLAB
filter algorithm. You then view the generated C code using the code generation
report and compare the generated C code with the original MATLAB code.

How to Generate C Code.

1 On the Build tab, from the Output type drop-down list, select C/C++
Static Library.

MATLAB Coder is now ready to generate a static library for kalman01. The
default name for the library is kalman01.

Note For the purpose of this tutorial, use the default build settings.
Different project settings are available for MEX and C/C++ output types.
When you switch between MEX and C/C++ code generation, you should
verify these settings.

2 On the Build tab, click the Build button.

The Build progress dialog box is displayed. MATLAB Coder generates a
standalone C static library kalman01 in the work\codegen\lib\kalman01,
where work is the folder that contains your tutorial files, and provides a
link to the code generation report.

3 To view the code generation report, click View report.

The Code Generation Report opens and, in the right pane, displays the
generated C code, kalman01.c. It also provides a hyperlink to open the C
code in the MATLAB Editor.

2-21

2 Tutorials

To learn more about the report, see “Code Generation Reports”.

Comparing the Generated C Code to Original MATLAB Code
To compare your generated C code to the original MATLAB code, open the C
file, kalman01.c, and the kalman01.m file in the MATLAB Editor. View the
files side by side by selecting the VIEW tab and then clicking Left/Right.

Here are some important points about the generated C code:

• The function signature is:

void kalman01(const real_T z[2], real_T y[2])

z corresponds to the input z in your MATLAB code. The size of z is 2, which
corresponds to the total size (2 x 1) of the example input you used when
you compiled your MATLAB code.

2-22

C Code Generation Using the Project Interface

• You can easily compare the generated C code to your original MATLAB
code. In the generated C code:

- Your function name is unchanged.

- Your comments are preserved in the same position.

- Your variable names are the same as in the original MATLAB code.

Note If a variable in your MATLAB code is set to a constant value,
it does not appear as a variable in the generated C code. Instead, the
generated C code contains the actual value of the variable.

Modifying the Filter to Accept a Fixed-Size Input
The filter you have worked on so far in this tutorial uses a simple batch
process that accepts one input at a time, so you must call the function
repeatedly for each input. In this part of the tutorial, you learn how to modify
the algorithm to accept a fixed-sized input, which makes the algorithm
suitable for frame-based processing.

Modifying Your MATLAB Code. To modify the code yourself, work through
the exercises in this section. Otherwise, open the supplied file kalman03.m in
your solutions subfolder to see the modified algorithm.

The filter algorithm you have used so far in this tutorial accepts only one
input. You can now modify the algorithm to process a vector containing more
than one input. You need to find the length of the vector and call the filter
code for each element in the vector in turn. You do this by calling the filter
algorithm in a for-loop.

1 Open kalman01.m in the MATLAB Editor.

edit kalman01.m

Tip Before modifying your code, it is best practice to preserve the current
version by backing it up.

2-23

2 Tutorials

2 Add a for-loop around the filter code.

a Before the comment

% Predicted state and covariance

insert:

for i=1:size(z,2)

b After

% Compute the estimated measurements
y = H * x_est;

insert:

end

Your filter code should now look like this:

for i=1:size(z,2)
% Predicted state and covariance
x_prd = A * x_est;
p_prd = A * p_est * A' + Q;

% Estimation
S = H * p_prd' * H' + R;
B = H * p_prd';
klm_gain = (S \ B)';

% Estimated state and covariance
x_est = x_prd + klm_gain * (z - H * x_prd);
p_est = p_prd - klm_gain * H * p_prd;

% Compute the estimated measurements
y = H * x_est;

end

3 Modify the line that calculates the estimated state and covariance to use
the ith element of input z.

Change

2-24

C Code Generation Using the Project Interface

x_est = x_prd + klm_gain * (z - H * x_prd);

to

x_est = x_prd + klm_gain * (z(:,i) - H * x_prd);

4 Modify the line that computes the estimated measurements to append the
result to the ith element of the output y.

Change

y = H * x_est;

to

y(:,i) = H * x_est;

The code analyzer message indicator in the top right turns red to indicate
that the code analyzer has detected an error. The code analyzer underlines
the offending code in red and places a red marker to the right.

5 Move your pointer over the red marker to view the error.

The code analyzer reports that code generation requires variable y to be
fully defined before subscripting it.

Why Preallocate the Outputs?

You must preallocate outputs here because code generation does not
support increasing the size of an array through indexing. Repeatedly
expanding the size of an array over time can adversely affect the
performance of your program. See “Preallocating Memory”.

2-25

2 Tutorials

6 To address the error, preallocate memory for the output y, which is the
same size as the input z. Add this code before the for-loop.

% Pre-allocate output signal:
y=zeros(size(z));

The red error marker disappears and the code analyzer message indicator
in the top right edge of the code turns green, which indicates that you have
fixed all the errors and warnings detected by the code analyzer.

For more information on using the code analyzer, see “Running the Code
Analyzer Report”.

7 Save the file.

You are ready to begin the next task in the tutorial, “Generating C Code for
Your Modified Algorithm” on page 2-27.

2-26

C Code Generation Using the Project Interface

Generating C Code for Your Modified Algorithm. You modified the
algorithm to expect fixed-size input, so you must first define the input type for
the updated kalman01 function. Use the test file test02_ui.m to autodefine
input types for the updated kalman01.m. This script sets the frame size to 10
and calculates the number of frames in the example input. It then calls the
Kalman filter and plots the results for each frame in turn.

1 On the MATLAB Coder project Overview tab, click the Autodefine types
link.

2 In the Autodefine Entry-Point Input Types dialog box, click the
button to add a test file to the project.

3 Select test02_ui.m and click Open.

The test file test02_ui.m sets the frame size to 10 and calculates the
number of frames in the example input. It then calls the Kalman filter and
plots the results for each frame in turn.

Contents of test02_ui.m

% Figure setup
clear all;
% Load position data
load position.mat
% Set up the frame size
numPts = 300;
frame=10;
numFrms=300/frame;

figure;hold;grid;
% Kalman filter loop
for i = 1: numFrms

% Generate the location data
z = position(:,frame*(i-1)+1:frame*i);

% Use Kalman filter to estimate the location
y = kalman01(z);

% Plot the results

2-27

2 Tutorials

for n=1:frame
plot_trajectory(z(:,n),y(:,n));
end

end
hold;

4 In the Autodefine Entry-Point Input Types dialog box, click the Run
button.

The test file runs and plots the trajectory of the object and the Kalman
filter estimated position as before. MATLAB Coder infers that the input
type of z is double(2x10).

5 Click Use These Types.

MATLAB Coder assigns this type to z.

You are now ready to build the project to generate and test a MEX function
for kalman01.m.

To generate and test a MEX function:

1 On the Build tab, set Output type to MEX Function.

2 On the Build tab Verification pane, set Test file to test02_ui.m.

3 On the Verification pane, select Rebuild MEX function.

4 Select Redirect entry-point calls to MEX function.

5 Click Run.

MATLAB Coder generates a MEX function. It then runs the test file and
automatically replaces calls to the MATLAB algorithm with calls to the
MEX function. The test runs and plots the trajectory of the object and the
Kalman filter estimated position as before.

To generate C code:

1 On the Build tab, set Output type to C/C++ Static Library and select
Generate code only.

2-28

C Code Generation Using the Project Interface

This option instructs MATLAB Coder to generate code only without
invoking the make command. If this option is used, MATLAB Coder does
not generate compiled object code. This option saves you time during the
development cycle when you want to iterate rapidly between modifying
MATLAB code and generating C code and are mainly interested in
inspecting the C code.

2 Click the Build button.

The Build progress dialog box appears. MATLAB Coder generates C code
in the work\codegen\lib\kalman01, where work is the folder that contains
your tutorial files subfolder and provides a link to the code generation
report.

3 To view the code generation report, click View report

The Code Generation Report opens and displays the generated code,
kalman01.c.

4 Compare the generated C code with the C code for the scalar Kalman
filter. You see that the code is almost identical except that there is a now a
for-loop for the frame processing.

Here are some important points about the generated C code:

• The function signature is now:

void kalman01(const real_T z[20], real_T y[20])

The size of z and y is now 20, which corresponds to the size of the
example input z (2x10) used to compile your MATLAB code.

• The filtering now takes place in a for-loop. The for-loop iterates over
all 10 inputs.

for(i = 0; i < 10; i++)
{

/* Predicted state and covariance */ ...

Using the Filter to Accept a Variable-Size Input
The algorithm you have used so far in this tutorial is suitable for processing
input data that consists of fixed-size frames. In this part of the tutorial, you

2-29

2 Tutorials

test your algorithm with variable-size inputs and see that the algorithm is
suitable for processing packets of data of varying size. You then learn how to
generate code for a variable-size input.

Testing the Algorithm with Variable-Size Inputs. Use the test script
test03_ui.m to test the filter with variable-size inputs.

The test script calls the filter algorithm in a loop, passing a different size
input to the filter each time. Each time through the loop, the test script calls
the plot_trajectory function for every position in the input.

To run the test script, at the MATLAB command line, enter:

test03_ui

The test script runs and plots the trajectory of the object and the Kalman
filter estimated position as before.

You have created an algorithm that accepts variable-size inputs. You are
ready to begin the next task in the tutorial, “Generating C Code for a
Variable-Size Input” on page 2-61.

Note Before generating C code, it is best practice to generate a MEX function
that you can execute within the MATLAB environment to test your algorithm
and check for run-time errors.

How to Generate C Code for a Variable-Size Input.

1 On the MATLAB Coder project Overview tab, click the Autodefine types
link.

2 In the Autodefine Entry-Point Input Types dialog box, click the
button to add a test file to the project.

3 Select test03_ui.m and click Open.

4 In the Autodefine Entry-Point Input Types dialog box, click Run.

2-30

C Code Generation Using the Project Interface

The test file runs and plots the trajectory of the object and the Kalman
filter estimated position as before. MATLAB Coder infers that the input
type of z is double(2x:100). The : in front of the second dimension
indicates that this dimension is variable size.

Because the test file calls kalman01 multiple times with different sized
inputs, MATLAB Coder takes the union of the inputs and infers that the
inputs are variable size, with an upper bound equal to the size of the
largest input.

5 Click Use These Types.

MATLAB Coder assigns this type to z.

You are now ready to build the project to generate and test a MEX function
for kalman01.m.

To generate and test a MEX function:

1 On the Build tab, set Output type to MEX Function.

2 On the Build tab Verification pane, set Test file to test03_ui.m.

3 On the Verification pane, select Rebuild MEX function.

4 Select Redirect entry-point calls to MEX function.

5 Click Run.

MATLAB Coder generates a MEX function. It then runs the test file and
automatically replaces calls to the MATLAB algorithm with calls to the
MEX function. The test runs and plots the trajectory of the object and the
Kalman filter estimated position as before.

To generate C code:

1 On the Build tab, set Output type to C/C++ Static Library and select
Generate code only.

This option instructs MATLAB Coder to generate code only without
invoking the make command. If this option is used, MATLAB Coder does
not generate compiled object code. This option saves you time during the

2-31

2 Tutorials

development cycle when you want to iterate rapidly between modifying
MATLAB code and generating C code and are mainly interested in
inspecting the C code.

2 On the Build tab, click the Build button.

The Build progress dialog box appears. MATLAB Coder generates a
standalone C library kalman01 in the work\codegen\lib\kalman01, where
work is the folder that contains your tutorial files. subfolder and provides a
link to the code generation report.

3 View the generated C code as before.

Here are some important points about the generated C code:

• The generated C code can process any size input from 2 x 1 to 2 x 100.
The function signature is now:

void kalman01(real_T z_data[200], ...
int32_T z_sizes[2], ...

real_T y_data[200], int32_T y_sizes[2])

Because y and z are variable size, the generated code contains two pieces
of information about each of them: the data and the actual size of the
sample. For example, for variable z, the generated code contains:

– The data z_data[200], where 200 is the maximum size of input z.

– z_sizes[2], which contains the actual size of the input data. This
information varies each time the filter is called.

• To maximize efficiency, the actual size of the input data z_sizes is used
when calculating the estimated position. The filter processes only the
number of samples available in the input.

for (i = 0; i <= z_size[1]; i++) {
/* Predicted state and covariance */

for(k = 0; k < 6; k++) {
...

2-32

C Code Generation Using the Project Interface

Key Points to Remember

• Back up your MATLAB code before you modify it.

• Use test scripts to separate the pre- and post-processing from the core
algorithm.

• Generate a MEX function before generating C code. Use this MEX function
to simulate your algorithm in MATLAB to validate its operation and check
for run-time errors.

• Use the Autodefine types option to specify input parameters if you have
a test file that calls the entry-point function with the required class, size,
and complexity.

• Create a code generation report.

Learn More

• “Next Steps” on page 2-33

• “Product Help” on page 2-34

• “MathWorks Online” on page 2-34

Next Steps

To... See...

Learn how to integrate your MATLAB code
with Simulink models

“Track Object Using MATLAB Code”

Learn more about using MATLAB for code
generation

“MATLAB Algorithm Design”

Use variable-size data “Variable-Size Data Definition for Code
Generation”

Speed up fixed-point MATLAB code fiaccel

Integrate custom C code into MATLAB code
and generate embeddable code

“Custom C/C++ Code Integration”

2-33

2 Tutorials

To... See...

Integrate custom C code into a MATLAB
function for code generation

coder.ceval

Generate HDL from MATLAB code www.mathworks.com/products/slhdlcoder

Product Help
MathWorks product documentation is available from the Help menu on the
MATLAB desktop.

MathWorks Online
For additional information and support, visit the MATLAB Coder page on
the MathWorks Web site at:

www.mathworks.com/products/matlab-coder

2-34

http://www.mathworks.com/products/slhdlcoder/
http://www.mathworks.com/products/matlab-coder/

C Code Generation at the Command Line

C Code Generation at the Command Line

In this section...

“Learning Objectives” on page 2-35

“Tutorial Prerequisites” on page 2-35

“Example: The Kalman Filter” on page 2-36

“Files for the Tutorial” on page 2-39

“Design Considerations When Writing MATLAB Code for Code Generation”
on page 2-41

“Tutorial Steps” on page 2-42

“Key Points to Remember” on page 2-63

“Best Practices Used in This Tutorial” on page 2-64

“Where to Learn More” on page 2-64

Learning Objectives
In this tutorial, you will learn how to:

• Automatically generate a MEX function from your MATLAB code and
use this MEX function to validate your algorithm in MATLAB before
generating C code.

• Automatically generate C code from your MATLAB code.

• Define function input properties at the command line.

• Specify variable-size inputs when generating code.

• Specify code generation properties.

• Generate a code generation report that you can use to debug your MATLAB
code and verify that it is suitable for code generation.

Tutorial Prerequisites

• “What You Need to Know” on page 2-36

• “Required Products” on page 2-36

2-35

2 Tutorials

What You Need to Know
To complete this tutorial, you should have basic familiarity with MATLAB
software.

Required Products
To complete this tutorial, you must install the following products:

• MATLAB

• MATLAB Coder

• C compiler (for most platforms, a default C compiler is supplied with
MATLAB)

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

You must set up the C compiler before generating C code. See “Setting Up
Your C Compiler” on page 2-45.

For instructions on installing MathWorks products, see the MATLAB
installation documentation for your platform. If you have installed MATLAB
and want to check which other MathWorks products are installed, enter ver
in the MATLAB Command Window.

Example: The Kalman Filter

• “Description” on page 2-36

• “Algorithm” on page 2-37

• “Filtering Process” on page 2-38

• “Reference” on page 2-39

Description
This section describes the example used by the tutorial. You do not have to be
familiar with the algorithm to complete the tutorial.

2-36

C Code Generation at the Command Line

The example for this tutorial uses a Kalman filter to estimate the position
of an object moving in a two-dimensional space from a series of noisy inputs
based on past positions. The position vector has two components, x and y,
indicating its horizontal and vertical coordinates.

Kalman filters have a wide range of applications, including control, signal
and image processing; radar and sonar; and financial modeling. They are
recursive filters that estimate the state of a linear dynamic system from a
series of incomplete or noisy measurements. The Kalman filter algorithm
relies on the state-space representation of filters and uses a set of variables
stored in the state vector to characterize completely the behavior of the
system. It updates the state vector linearly and recursively using a state
transition matrix and a process noise estimate.

Algorithm
This section describes the algorithm of the Kalman filter and is implemented
in the MATLAB version of the filter supplied with this tutorial.

The algorithm predicts the position of a moving object based on its past
positions using a Kalman filter estimator. It estimates the present position
by updating the Kalman state vector, which includes the position (x and y),
velocity (Vx and Vy), and acceleration (Ax and Ay) of the moving object. The
Kalman state vector, x_est, is a persistent variable.

% Initial conditions
persistent x_est p_est
if isempty(x_est)

x_est = zeros(6, 1);
p_est = zeros(6, 6);

end

x_est is initialized to an empty 6x1 column vector and updated each time
the filter is used.

The Kalman filter uses the laws of motion to estimate the new state:

2-37

2 Tutorials

X X Vx dt

Y Y Vy dt

Vx Vx Ax dt

Vy Vy Ay dt

= +
= +
= +
= +

0

0

0

0

.

.

.

.

These laws of motion are captured in the state transition matrix A, which is a
matrix that contains the coefficient values of x, y, Vx, Vy, Ax, and Ay.

% Initialize state transition matrix
dt=1;
A=[1 0 dt 0 0 0;...

0 1 0 dt 0 0;...
0 0 1 0 dt 0;...
0 0 0 1 0 dt;...
0 0 0 0 1 0 ;...
0 0 0 0 0 1];

Filtering Process
The filtering process has two phases:

• Predicted state and covariance

The Kalman filter uses the previously estimated state, x_est, to predict the
current state, x_prd. The predicted state and covariance are calculated in:

% Predicted state and covariance
x_prd = A * x_est;
p_prd = A * p_est * A' + Q;

• Estimation

The filter also uses the current measurement, z, and the predicted state,
x_prd, to estimate a closer approximation of the current state. The
estimated state and covariance are calculated in:

% Measurement matrix
H = [1 0 0 0 0 0; 0 1 0 0 0 0];
Q = eye(6);
R = 1000 * eye(2);

% Estimation

2-38

C Code Generation at the Command Line

S = H * p_prd' * H' + R;
B = H * p_prd';
klm_gain = (S \ B)';

% Estimated state and covariance
x_est = x_prd + klm_gain * (z - H * x_prd);
p_est = p_prd - klm_gain * H * p_prd;

% Compute the estimated measurements
y = H * x_est;

Reference
Haykin, Simon. Adaptive Filter Theory. Upper Saddle River, NJ:
Prentice-Hall, Inc., 1996.

Files for the Tutorial

• “About the Tutorial Files” on page 2-39

• “Location of Files” on page 2-40

• “Names and Descriptions of Files” on page 2-40

About the Tutorial Files
The tutorial uses the following files:

• Example MATLAB code files for each step of the tutorial.

Throughout this tutorial, you work with MATLAB files that contain a
simple Kalman filter algorithm.

• Build scripts that you use to compile your function code.

• Test files that:

- Perform the preprocessing functions.

- Call the Kalman filter.

- Perform the post-processing functions.

• A MAT-file that contains input data.

2-39

2 Tutorials

Location of Files
The tutorial files are available in the following folder:
docroot\toolbox\coder\examples\kalman. To run the tutorial,
you must copy these files to a local folder. For instructions, see “Copying
Files Locally” on page 2-43.

Names and Descriptions of Files

Type Name Description

kalman01.m Baseline MATLAB implementation of a
scalar Kalman filter.

kalman02.m Version of the original algorithm that is
suitable for code generation.

Function
code

kalman03.m Kalman filter suitable for use with
frame-based and packet-based inputs.

build01.m Generates MEX function for the original
Kalman filter.

build02.m Generates C code for the original Kalman
filter.

build03.m Generates C code for the frame-based
Kalman filter.

Build
scripts

build04.m Generates C code for the variable-size
(packet-based) Kalman filter.

test01.m Tests the scalar Kalman filter and plots
the trajectory.

test02.m Tests MEX function for the original
Kalman filter and plots the trajectory.

test03.m Tests the frame-based Kalman filter.

Test
scripts

test04.m Tests the variable-size (packet-based)
Kalman filter.

2-40

C Code Generation at the Command Line

Type Name Description

MAT-file position.mat Contains the input data used by the
algorithm.

Plot
function

plot_trajectory.m Plots the trajectory of the object and the
Kalman filter estimated position.

Design Considerations When Writing MATLAB Code
for Code Generation
When writing MATLAB code that you want to convert into efficient,
standalone C/C++ code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before
use, MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You
can define inputs, outputs, and local variables in MATLAB functions to
represent data that varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory
allocation.

With dynamic memory allocation, you potentially use less memory at the
expense of time to manage the memory. With static memory, you get best
speed performance, but with higher memory usage. Most MATLAB code
takes advantage of the dynamic sizing features in MATLAB, therefore
dynamic memory allocation typically enables you to generate code from
existing MATLAB code without modifying it much. Dynamic memory
allocation also allows some programs to compile even when upper bounds
cannot be found.

Static allocation reduces the memory footprint of the generated code, and
therefore is suitable for applications where there is a limited amount of
available memory, such as embedded applications.

• Speed

2-41

2 Tutorials

Because embedded applications must run in real time, the code must be
fast enough to meet the required clock rate.

To improve the speed of the generated code:

- Choose a suitable C/C++ compiler. The default compiler that MathWorks
supplies with MATLAB for Windows 32-bit platforms is not a good
compiler for performance.

- Consider disabling run-time checks.

By default, for safety, the code generated for your MATLAB code
contains memory integrity checks and responsiveness checks. Generally,
these checks result in more generated code and slower simulation.
Disabling run-time checks usually results in streamlined generated code
and faster simulation. Disable these checks only if you have verified that
array bounds and dimension checking is unnecessary.

See Also

• “Data Definition Basics”

• “Variable-Size Data”

• “Bounded Versus Unbounded Variable-Size Data”

• “Control Dynamic Memory Allocation”

• “Control Run-Time Checks”

Tutorial Steps

• “Copying Files Locally” on page 2-43

• “Running the Original MATLAB Code” on page 2-44

• “Setting Up Your C Compiler” on page 2-45

• “Considerations for Making Your Code Suitable for Code Generation” on
page 2-46

• “Making the MATLAB Code Suitable for Code Generation” on page 2-48

• “Generating a MEX Function Using codegen” on page 2-50

• “Verifying the MEX Function” on page 2-51

2-42

C Code Generation at the Command Line

• “Generating C Code Using codegen” on page 2-52

• “Comparing the Generated C Code to Original MATLAB Code” on page 2-54

• “Modifying the Filter to Accept a Fixed-Size Input” on page 2-55

• “Modifying the Filter to Accept a Variable-Size Input” on page 2-60

• “Testing the Algorithm with Variable-Size Inputs” on page 2-61

• “Generating C Code for a Variable-Size Input” on page 2-61

Copying Files Locally
Copy the tutorial files to a local working folder:

1 Create a local solutions folder, for example, c:\coder\kalman\solutions.

2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB
command line, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the contents of the kalman subfolder to your local solutions folder,
specifying the full path name of the solutions folder:

copyfile('kalman', 'solutions')

Your solutions folder now contains a complete set of solutions for the
tutorial. If you do not want to perform the steps for each task in the
tutorial, you can view the solutions to see how the code should look.

4 Create a local work folder, for example, c:\coder\kalman\work.

5 Copy the following files from your solutions folder to your work folder.

• kalman01.m

• position.mat

• Build files build01.m through build04.m

• Test scripts test01.m through test04.m

• plot_trajectory.m

2-43

2 Tutorials

Your work folder now contains all the files that you need to get started
with the tutorial.

Running the Original MATLAB Code
In this tutorial, you work with a MATLAB function that implements a Kalman
filter algorithm, which predicts the position of a moving object based on its
past positions. Before generating C code for this algorithm, you make the
MATLAB version suitable for code generation and generate a MEX function.
Then you test the resulting MEX function to validate the functionality of the
modified code. As you work through the tutorial, you refine the design of the
algorithm to accept variable-size inputs.

First, use the script test01.m to run the original MATLAB function to see
how the Kalman filter algorithm works. This script loads the input data and
calls the Kalman filter algorithm to estimate the location. It then calls a
plot function, plot_trajectory, which plots the trajectory of the object and
the Kalman filter estimated position.

1 Set your MATLAB current folder to the work folder that contains your files
for this tutorial. At the MATLAB command line, enter:

cd work

where work is the full path name of the work folder containing your files.
For more information, see “Using the Current Folder Browser”.

2 At the MATLAB command line, enter:

test01

The test script runs and plots the trajectory of the object in blue and the
Kalman filter estimated position in green. Initially, you see that it takes a
short time for the estimated position to converge with the actual position
of the object. Then three sudden shifts in position occur—each time the
Kalman filter readjusts and tracks the object after a few iterations.

2-44

C Code Generation at the Command Line

Setting Up Your C Compiler
Before using codegen to compile the Kalman filter example code, you must
set up your C compiler. For most platforms, MathWorks supplies a default
compiler with MATLAB. If your installation does not include a default
compiler, for a list of supported compilers for the current release of MATLAB,
see http://www.mathworks.com/support/compilers/current_release/ and install
a compiler that is suitable for your platform.

To set up the installed compiler:

1 At the MATLAB command line, enter:

2-45

2 Tutorials

mex -setup

2 Enter y to see the list of installed compilers.

3 Select a supported compiler.

4 Enter y to verify your choice.

Considerations for Making Your Code Suitable for Code
Generation

Designing for Code Generation. Before generating code, you must
prepare your MATLAB code for code generation. The first step is to eliminate
unsupported constructs.

Checking for Violations at Design Time. There are two tools that help
you detect code generation issues at design time: the code analyzer and the
code generation readiness tool.

You use the code analyzer in the MATLAB Editor to check for code
violations at design time, minimizing compilation errors. The code analyzer
continuously checks your code as you enter it. It reports problems and
recommends modifications to maximize performance and maintainability.

To use the code analyzer to identify warnings and errors specific to MATLAB
for code generation, you must add the %#codegen directive (or pragma) to
your MATLAB file. A complete list of MATLAB for Code Generation code
analyzer messages is available in the MATLAB Code Analyzer preferences.
See “Running the Code Analyzer Report” for more details.

Note The code analyzer might not detect all MATLAB for code generation
issues. After eliminating any errors or warnings that the code analyzer
detects, compile your code with MATLAB Coder to determine if the code has
other compliance issues.

The code generation readiness tool screens MATLAB code for features and
functions that are not supported for code generation. The tool provides a
report that lists the source files that contain unsupported features and

2-46

C Code Generation at the Command Line

functions and an indication of how much work is needed to make the MATLAB
code suitable for code generation.

You can access the code generation readiness tool in the following ways:

• In the current folder browser — by right-clicking a MATLAB file

• At the command line — by using the coder.screener function.

• In a project — when you add a MATLAB file to a project, if MATLAB Coder
detects code generation issues, it provides a link to the code generation
readiness report.

Checking for Violations at Code Generation Time. You can use codegen
to check for violations at code generation time. codegen checks that your
MATLAB code is suitable for code generation.

When codegen detects errors or warnings, it automatically generates an error
report that describes the issues and provides links to the offending MATLAB
code. For more information, see “Code Generation Reports”.

After code generation, codegen generates a MEX function that you can use to
test your implementation in MATLAB.

Checking for Violations at Run Time. You can use codegen to generate
a MEX function and check for violations at run time. In simulation, the
code generated for your MATLAB functions includes the run-time checks.
Disabling run-time checks and extrinsic calls usually results in streamlined
generated code and faster simulation. You control run-time checks using the
MEX configuration object, coder.MexCodeConfig. For more information, see
“Control Run-Time Checks”.

If you encounter run-time errors in your MATLAB functions, a run-time stack
appears automatically in the MATLAB Command Window. See “Debug
Run-Time Errors”.

2-47

2 Tutorials

Making the MATLAB Code Suitable for Code Generation

Making Your Code Suitable for Code Generation. To modify the code
yourself, work through the exercises in this section. Otherwise, open the
supplied file kalman02.m in your solutions subfolder to see the modified
algorithm.

To begin the process of making your MATLAB code suitable for code
generation, you work with the file kalman01.m. This code is a MATLAB
version of a scalar Kalman filter that estimates the state of a dynamic system
from a series of noisy measurements.

1 Set your MATLAB current folder to the work folder that contains your files
for this tutorial. At the MATLAB command line, enter:

cd work

where work is the full path name of the work folder containing your files.
See “Using the Current Folder Browser”.

2 Open kalman01.m in the MATLAB Editor. At the MATLAB command
line, enter:

edit kalman01.m

The file opens in the MATLAB Editor. The code analyzer message indicator
in the top right corner of the MATLAB Editor is green, which indicates that
it has not detected any errors, warnings, or opportunities for improvement
in the code.

3 Turn on MATLAB for code generation error checking by adding the
%#codegen directive after the function declaration.

function y = kalman01(z) %#codegen

The code analyzer message indicator remains green, indicating that it has
not detected any code generation related issues.

2-48

C Code Generation at the Command Line

For more information on using the code analyzer, see “Running the Code
Analyzer Report”.

4 Save the file in the current folder as kalman02.m:

a To match the function name to the file name, change the function name
to kalman02.

function y = kalman02(z)

b In the MATLAB Editor, select Save As from the File menu.

c Enter kalman02.m as the new file name.

Note If you do not match the file name to the function name, the code
analyzer warns you that these names are not the same and highlights
the function name in orange to indicate that it can provide an automatic
correction. For more information, see “Changing Code Based on Code
Analyzer Messages”.

d Click Save.

You are now ready to compile your code using codegen. By default,
codegen checks that your MATLAB code is suitable for code generation.
Then, after compilation, codegen generates a MEX function that you can
test in MATLAB.

2-49

2 Tutorials

Generating a MEX Function Using codegen
Because C uses static typing, codegen must determine the properties of all
variables in the MATLAB files at compile time. Therefore, you must specify
the properties of all function inputs at the same time as you compile the file
with codegen.

To compile kalman02.m, you must specify the size of the input vector y.

1 Load the position.mat file into your MATLAB workspace.

load position.mat

This command loads a matrix position containing the x and y coordinates
of 310 points in Cartesian space.

2 Get the first vector in the position matrix.

z = position(1:2,1);

3 Compile the file kalman02.m using codegen.

codegen -report kalman02.m -args {z}

codegen reports that the code generation is complete. By default, it
generates a MEX function, kalman02_mex, in the current folder and
provides a link to the code generation report.

Note that:

• The -report option instructs codegen to generate a code generation
report, which you can use to debug your MATLAB code and verify that
it is suitable for code generation.

• The -args option instructs codegen to compile the file kalman02.m using
the class, size, and complexity of the sample input parameter z.

You have proved that the Kalman filter example code is suitable for code
generation using codegen. You are ready to begin the next task in this
tutorial, “Verifying the MEX Function” on page 2-51.

2-50

C Code Generation at the Command Line

Verifying the MEX Function
In this part of the tutorial, you test the MEX function to verify that it provides
the same functionality as the original MATLAB code.

In addition, simulating your algorithm in MATLAB before generating C code
enables you to detect and fix run-time errors that would be much harder to
diagnose in the generated C code. By default, the following run-time checks
execute when you simulate your MEX function in MATLAB:

• Memory integrity checks. These checks perform array bounds and
dimension checking and detect violations of memory integrity in code
generated for MATLAB functions. If a violation is detected, MATLAB stops
execution with a diagnostic message.

• Responsiveness checks in code generated for MATLAB functions. These
checks enable periodic checks for Ctrl+C breaks in code generated for
MATLAB functions, allowing you to terminate execution with Ctrl+C at
any time.

For more information, see “Control Run-Time Checks”.

Running the Generated MEX Function. You run the MEX function,
kalman02_mex, using coder.runTest to call the test file, test02. This test
file is the same as test01 that you used in “Running the Original MATLAB
Code” on page 2-44 except that it calls kalman02 instead of kalman01.

Contents of test02.m

% Figure setup
clear all;
load position.mat
numPts = 300;
figure;hold;grid;

% Kalman filter loop
for idx = 1: numPts

% Generate the location data
z = position(:,idx);

% Use Kalman filter to estimate the location

2-51

2 Tutorials

y = kalman02(z);

% Plot the results
plot_trajectory(z,y);

end
hold;

coder.runTest runs the test file and replaces calls to the MATLAB algorithm
with calls to the MEX function.

coder.runTest('test02','kalman02')

coder.runTest runs the MEX function, kalman02_mex, using the same inputs
you used in “Running the Original MATLAB Code” on page 2-44.

The test script runs and plots the trajectory of the object and the Kalman
filter estimated position as before.

You have generated a MEX function for your MATLAB code, verified that it
is functionally equivalent to your original MATLAB code, and checked that
no run-time errors occur. Now you are ready to begin the next task in this
tutorial, “Generating C Code Using codegen” on page 2-52.

Generating C Code Using codegen
In this task, you use codegen to generate C code for your MATLAB filter
algorithm. You then view the generated C code using the MATLAB Coder
code generation report and compare the generated C code with the original
MATLAB code. You use the supplied build script build02.m to generate code.

About the Build Script. A build script automates a series of MATLAB
commands that you want to perform repeatedly from the command line,
saving you time and eliminating input errors.

The build script build02.m contains:

% Load the position vector
load position.mat
% Get the first vector in the position matrix
% to use as an example input
z = position(1:2,1);

2-52

C Code Generation at the Command Line

% Generate C code only, create a code generation report
codegen -c -d build02 -config coder.config('lib')

-report kalman02.m -args {z}

Note that:

• codegen opens the file kalman02.m and automatically translates the
MATLAB code into C source code.

• The -c option instructs codegen to generate code only, without compiling
the code to an object file. This option enables you to iterate rapidly between
modifying MATLAB code and generating C code.

• The -config coder.config('lib') option instructs codegen to generate
embeddable C code suitable for targeting a static library instead
of generating the default MEX function. For more information, see
coder.config.

• The -d option instructs codegen to generate code in the output folder
build02.

• The -report option instructs codegen to generate a code generation report
that you can use to debug your MATLAB code and verify that it is suitable
for code generation.

• The -args option instructs codegen to compile the file kalman01.m using
the class, size, and complexity of the sample input parameter z.

How to Generate C Code.

1 Run the build script.

build02

MATLAB processes the build file and outputs the message:

Code generation successful: View report.

codegen generates files in the folder, build02.

2 To view the code generation report, click View report.

The MATLAB Coder Code Generation Report opens and displays the
generated code, kalman02.c.

2-53

2 Tutorials

The file appears in the right pane. The code generation report provides a
hyperlink to open the C code in the MATLAB Editor.

To learn more about the report, see “Code Generation Reports”.

Comparing the Generated C Code to Original MATLAB Code
To compare your generated C code to the original MATLAB code, open the C
file, kalman02.c, and the kalman02.m file in the MATLAB Editor. View the
files side by side by selecting the VIEW tab and then clicking Left/Right.

Here are some important points about the generated C code:

• The function signature is:

void kalman02(const real_T z[2], real_T y[2])

z corresponds to the input z in your MATLAB code. The size of z is 2, which
corresponds to the total size (2 x 1) of the example input you used when
you compiled your MATLAB code.

• You can easily compare the generated C code to your original MATLAB
code. In the generated C code:

- Your function name is unchanged.

2-54

C Code Generation at the Command Line

- Your comments are preserved in the same position.

- Your variable names are the same as in the original MATLAB code.

Note If a variable in your MATLAB code is set to a constant value,
it does not appear as a variable in the generated C code. Instead, the
generated C code contains the actual value of the variable.

Modifying the Filter to Accept a Fixed-Size Input
The filter you have worked on so far in this tutorial uses a simple batch
process that accepts one input at a time, so you must call the function
repeatedly for each input. In this part of the tutorial, you learn how to modify
the algorithm to accept a fixed-sized input, which makes the algorithm
suitable for frame-based processing.

Modifying Your MATLAB Code. To modify the code yourself, work through
the exercises in this section. Otherwise, open the supplied file kalman03.m in
your solutions subfolder to see the modified algorithm.

The filter algorithm you have used so far in this tutorial accepts only one
input. You can now modify the algorithm to process a vector containing more
than one input. You need to find the length of the vector and call the filter
code for each element in the vector in turn. You do this by calling the filter
algorithm in a for-loop.

1 Open kalman02.m in the MATLAB Editor.

edit kalman02.m

2 Add a for-loop around the filter code.

a Before the comment

% Predicted state and covariance

insert:

for i=1:size(z,2)

2-55

2 Tutorials

b After

% Compute the estimated measurements
y = H * x_est;

insert:

end

Your filter code should now look like this:

for i=1:size(z,2)
% Predicted state and covariance
x_prd = A * x_est;
p_prd = A * p_est * A' + Q;

% Estimation
S = H * p_prd' * H' + R;
B = H * p_prd';
klm_gain = (S \ B)';

% Estimated state and covariance
x_est = x_prd + klm_gain * (z - H * x_prd);
p_est = p_prd - klm_gain * H * p_prd;

% Compute the estimated measurements
y = H * x_est;

end

3 Modify the line that calculates the estimated state and covariance to use
the ith element of input z.

Change

x_est = x_prd + klm_gain * (z - H * x_prd);

to

x_est = x_prd + klm_gain * (z(:,i) - H * x_prd);

4 Modify the line that computes the estimated measurements to append the
result to the ith element of the output y.

2-56

C Code Generation at the Command Line

Change

y = H * x_est;

to

y(:,i) = H * x_est;

The code analyzer message indicator in the top right turns red to indicate
that the code analyzer has detected an error. The code analyzer underlines
the offending code in red and places a red marker to the right.

5 Move your pointer over the red marker to view the error.

The code analyzer reports that code generation requires variable y to be
fully defined before subscripting it.

Why Preallocate the Outputs?

You must preallocate outputs here because the MATLAB for code
generation does not support increasing the size of an array over time.
Repeatedly expanding the size of an array over time can adversely affect
the performance of your program. See “Preallocating Memory”.

2-57

2 Tutorials

6 To address the error, preallocate memory for the output y, which is the
same size as the input z. Add this code before the for-loop.

% Pre-allocate output signal:
y=zeros(size(z));

The red error marker disappears and the code analyzer message indicator
in the top right edge of the code turns green, which indicates that you have
fixed all the errors and warnings detected by the code analyzer.

For more information on using the code analyzer, see “Running the Code
Analyzer Report”.

7 Change the function name to kalman03 and save the file as kalman03.m
in the current folder.

You are ready to begin the next task in the tutorial, “Testing Your Modified
Algorithm” on page 2-59.

2-58

C Code Generation at the Command Line

Testing Your Modified Algorithm. Use the test script test03.m to test
kalman03.m. This script sets the frame size to 10 and calculates the number
of frames in the example input. It then calls the Kalman filter and plots
the results for each frame in turn.

At the MATLAB command line, enter:

test03

The test script runs and plots the trajectory of the object and the Kalman
filter estimated position as before.

You are ready to begin the next task in the tutorial, “Generating C Code for
Your Modified Algorithm” on page 2-59.

Note Before generating C code, it is best practice to generate a MEX function
that you can execute within the MATLAB environment to test your algorithm
and check for run-time errors.

Generating C Code for Your Modified Algorithm. You use the supplied
build script build03.m to generate code. The only difference between this
build script and the script for the initial version of the filter is the example
input used when compiling the file. build03.m specifies that the input to the
function is a matrix containing five 2x1 position vectors, which corresponds
to a frame size of 10.

Contents of build03.m

% Load the position vector
load position.mat
% Get the first 5 positions in the position matrix to use
% as an example input
z = position(1:2,1:5);
% Generate C code only, create a code generation report
codegen -c -config coder.config('lib') -report kalman03.m -args {z}

To generate C code for kalman03:

2-59

2 Tutorials

1 At the MATLAB command line, enter:

build03

MATLAB processes the build file and outputs the message:

Code generation successful: View report.

The generated C code is in work\codegen\lib\kalman03, where work is
the folder that contains your tutorial files.

2 To view the generated C code:

a Click View report.

The MATLAB Coder Code Generation Report opens and displays the
generated coder, kalman03.c.

3 Compare the generated C code with the C code for the scalar Kalman
filter. You see that the code is almost identical except that there is a now a
for-loop for the frame processing.

Here are some important points about the generated C code:

• The function signature is now:

void kalman03(const real_T z[10], real_T y[10])

The size of z and y is now 10, which corresponds to the size of the
example input z (2x5) used to compile your MATLAB code.

• The filtering now takes place in a for-loop. The for-loop iterates over
all 5 inputs.

for(i = 0; i < 5; i++)
{

/* Predicted state and covariance */ ...

Modifying the Filter to Accept a Variable-Size Input
The algorithm you have used so far in this tutorial is suitable for processing
input data that consists of fixed-size frames. In this part of the tutorial, you
test your algorithm with variable-size inputs and see that the algorithm is

2-60

C Code Generation at the Command Line

suitable for processing packets of data of varying size. You then learn how to
generate code for a variable-size input.

Testing the Algorithm with Variable-Size Inputs
Use the test script test04.m to test kalman03.m with variable-size inputs.

The test script calls the filter algorithm in a loop, passing a different size
input to the filter each time. Each time through the loop, the test script calls
the plot_trajectory function for every position in the input.

To run the test script, at the MATLAB command line, enter:

test04

The test script runs and plots the trajectory of the object and the Kalman
filter estimated position as before.

You have created an algorithm that accepts variable-size inputs. You are
ready to begin the next task in the tutorial, “Generating C Code for a
Variable-Size Input” on page 2-61.

Note Before generating C code, it is best practice to generate a MEX function
that you can execute within the MATLAB environment to test your algorithm
and check for run-time errors.

Generating C Code for a Variable-Size Input
You use the supplied build script build04.m to generate code.

About the Build Script.

Contents of build04.m

% Load the position vector
load position.mat
N=100;
% Get the first N vectors in the position matrix to
% use as an example input

2-61

2 Tutorials

z = position(1:2,1:N);
% Specify the upper bounds of the variable-size input z
% using the coder.typeof declaration - the upper bound
% for the first dimension is 2; the upper bound for
% the second dimension is N. The first dimension is fixed,
% the second is variable.
eg_z = coder.typeof(z, [2 N], [0 1]);
% Generate C code only
% specify upper bounds for variable-size input z
codegen -c -config coder.config('lib') -report kalman03.m -args {eg_z}

This build file:

• Specifies the upper bounds explicitly for the variable-size input using the
declaration coder.typeof(z, [2 N], [0 1]) with the -args option on
the codegen command line. The second input, [2 N], specifies the size and
upper bounds of the variable size input z. Because N=100, coder.typeof
specifies that the input to the function is a matrix with two dimensions, the
upper bound for the first dimension is 2; the upper bound for the second
dimension is 100. The third input specifies which dimensions are variable.
A value of true or one means that the corresponding dimension is variable;
a value of false or zero means that the corresponding dimension is fixed.
The value [0 1] specifies that the first dimension is fixed, the second
dimension is variable. For more information, see “Generating Code for
MATLAB Functions with Variable-Size Data”.

• Creates a code configuration object cfg and uses it with the -config
option to specify code generation parameters. For more information, see
coder.config.

How to Generate C Code for a Variable-Size Input.

1 Use the build script build04 to generate C code.

build04

2 View the generated C code as before.

Here are some important points about the generated C code:

• The generated C code can process any size input from 2 x 1 to 2 x 100.
The function signature is now:

2-62

C Code Generation at the Command Line

void kalman03(real_T z_data[200], ...
int32_T z_sizes[2], ...

real_T y_data[200], int32_T y_sizes[2])

Because y and z are variable size, the generated code contains two pieces
of information about each of them: the data and the actual size of the
sample. For example, for variable z, the generated code contains:

– The data z_data[200], where 200 is the maximum size specified
using coder.typeof.

– z_sizes[2], which contains the actual size of the input data. This
information varies each time the filter is called.

• To maximize efficiency, the actual size of the input data z_sizes is used
when calculating the estimated position. The filter processes only the
number of samples available in the input.

for(i = 0; i+1 <= z_sizes[1]; i++) {
/* Predicted state and covariance */

for(k = 0; k < 6; k++) {
...

Key Points to Remember

• Back up your MATLAB code before you modify it.

• Decide on a naming convention for your files and save interim versions
frequently. For example, this tutorial uses a two-digit suffix to differentiate
the various versions of the filter algorithm.

• Use build scripts to build your files.

• Use test scripts to separate the pre- and post-processing from the core
algorithm.

• Generate a MEX function before generating C code. Use this MEX function
to simulate your algorithm in MATLAB to validate its operation and check
for run-time errors.

• Use the -args option to specify input parameters at the command line.

• Use the -report option to create a code generation report.

2-63

2 Tutorials

• Use coder.typeof to specify variable-size inputs.

• Use the code generation configuration object (coder.config) to specify
parameters for standalone C code generation.

Best Practices Used in This Tutorial

Best Practice — Preserving Your Code
Preserve your code before making further modifications. This practice
provides a fallback in case of error and a baseline for testing and validation.
Use a consistent file naming convention. For example, add a two-digit suffix
to the file name for each file in a sequence.

Best Practice — Comparing Files

Use the MATLAB Compare Against option to compare two MATLAB files to
examine differences between files.

Best Practice — Using Build Scripts

A build script automates a series of MATLAB commands that you want to
perform repeatedly from the command line, saving you time and eliminating
input errors. For more information, see .

Best Practice — Separating Your Test Bench from Your Function Code

Separate your core algorithm from your test bench. Create a separate test
script to do all the pre- and post-processing such as loading inputs, setting up
input values, calling the function under test, and outputting test results.

Where to Learn More

• “Next Steps” on page 2-65

• “Product Help” on page 2-65

• “MathWorks Online” on page 2-65

2-64

C Code Generation at the Command Line

Next Steps
To... See...

See all the compilation options for codegen codegen

Learn how to integrate your MATLAB code
with Simulink models

“Track Object Using MATLAB Code”

Learn more about using MATLAB for code
generation

“MATLAB Algorithm Design”

Use variable-size data “Variable-Size Data Definition for Code
Generation”

Speed up fixed-point MATLAB code fiaccel

Integrate custom C code into MATLAB code
and generate standalone code

“Custom C/C++ Code Integration”

Integrate custom C code into a MATLAB
function for code generation

coder.ceval

Generate HDL from MATLAB code www.mathworks.com/products/slhdlcoder

Product Help
MathWorks product documentation is available from the Help menu on the
MATLAB desktop.

MathWorks Online
For additional information and support, visit the MATLAB Coder page on
the MathWorks Web site at:

www.mathworks.com/products/matlab-coder

2-65

http://www.mathworks.com/products/slhdlcoder/
http://www.mathworks.com/products/matlab-coder/

2 Tutorials

MEX Function Generation at the Command Line

In this section...

“Learning Objectives” on page 2-66

“Tutorial Prerequisites” on page 2-66

“Example: Euclidean Minimum Distance” on page 2-67

“Files for the Tutorial” on page 2-69

“Tutorial Steps” on page 2-71

“Key Points to Remember” on page 2-89

“Best Practices Used in This Tutorial” on page 2-90

“Where to Learn More” on page 2-90

Learning Objectives
In this tutorial, you will learn how to:

• Automatically generate a MEX function from your MATLAB code.

• Define function input properties at the command line.

• Specify the upper bounds of variable-size data.

• Specify variable-size inputs.

• Generate a code generation report that you can use to debug your MATLAB
code and verify that it is suitable for code generation.

Tutorial Prerequisites

• “What You Need to Know” on page 2-66

• “Required Products” on page 2-67

What You Need to Know
To complete this tutorial, you should have basic familiarity with MATLAB
software.

2-66

MEX Function Generation at the Command Line

Required Products
To complete this tutorial, you must install the following products:

• MATLAB

• MATLAB Coder

• C compiler

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

You must set up the C compiler before generating C code. See “Setting Up
Your C Compiler” on page 2-75.

For instructions on installing MathWorks products, refer to the installation
documentation. If you have installed MATLAB and want to check which other
MathWorks products are installed, enter ver in the MATLAB Command
Window.

Example: Euclidean Minimum Distance

• “Description” on page 2-67

• “Algorithm” on page 2-68

Description
The Euclidean distance between points p and q is the length of the line

segment pq . In Cartesian coordinates, if p p p pn= (, ,...,)1 2 and q q q qn= (, ,...,)1 2
are two points in Euclidean n-space, then the distance from p to q is given by:

d p q p q

p q p q p q

p q

n n

i i
i

n

(,)

() () ... ()

()

= −

= − + − + + −

= −
=
∑

1 1
2

2 2
2 2

2

1

2-67

2 Tutorials

In one dimension, the distance between two points, x1 and x2, on a line is
simply the absolute value of the difference between the two points:

()x x x x2 1
2

2 1− = −

In two dimensions, the distance between p p p= (,)1 2 and q q q= (,)1 2 is:

() ()p q p q1 1
2

2 2
2− + −

The example for this tutorial computes the minimum Euclidean distance
between a column vector x and a collection of column vectors in the codebook
matrix cb. The function has three output variables:

• y, the vector in cb with the minimum distance to x

• idx, the index of the column vector in cb corresponding to the closest vector

• distance, the distance between x and y

Algorithm
This algorithm computes the minimum Euclidean distance between a column
vector x and a collection of column vectors in the codebook matrix cb. The
algorithm computes the minimum distance to x and finds the column vector in
cb that is closest to x. It outputs this column vector, y, its index, idx, in cb,
and distance, the distance between x and y.

The function signature for the algorithm is:

function [y,idx,distance] = euclidean(x,cb)

The minimum distance is initially set to the first element of cb.

idx=1;
distance=norm(x-cb(:,1));

The minimum distance calculation is performed in the for-loop.

for index=2:size(cb,2)
d=norm(x-cb(:,index));
if d < distance

2-68

MEX Function Generation at the Command Line

distance=d;
idx=index;

end
end

The output y is set to the minimum distance vector.

y=cb(:,idx);

Files for the Tutorial

• “About the Tutorial Files” on page 2-69

• “Location of Files” on page 2-69

• “Names and Descriptions of Files” on page 2-70

About the Tutorial Files
The tutorial uses the following files:

• Example MATLAB code files for each step of the tutorial.

Throughout this tutorial, you work with MATLAB files that contain a
simple Euclidean distance algorithm.

• Build scripts that you use to compile your function code.

• Test files that:

- Perform the preprocessing functions, for example, setting up input data.

- Call the specified Euclidean function.

- Perform the post-processing functions, for example, plotting the
distances.

• A MAT-file that contains example input data.

Location of Files
The tutorial files are available in the following folder:
docroot\toolbox\coder\examples\euclidean. To run the
tutorial, you must copy these files to a local folder. For instructions, see
“Copying Files Locally” on page 2-71.

2-69

2 Tutorials

Names and Descriptions of Files

Type Name Description

euclidean01.m Baseline MATLAB implementation of
Euclidean minimum distance algorithm
including plot functions.

euclidean02.m Version of the original algorithm suitable for
code generation with extrinsic calls to the
pause function.

euclidean03.m Version of the original algorithm without
plotting functions.

Function
code

euclidean04.m Modified algorithm that uses assert to
specify the upper bounds of variable N.

build01.m Build script for euclidean03.m.

build02.m Build script for euclidean03.m specifying
two-dimensional inputs.

build03.m Build script for euclidean03.m specifying
variable-size inputs.

Build
script

build04.m Build script for euclidean04.m.

test01.m Initial version of test script, includes plot
functions. Tests euclidean03MEX function.

test02.m Tests the three-dimensional euclidean03
MEX function with two-dimensional inputs.

test03.m Tests the two-dimensional euclidean04
MEX function with two-dimensional inputs.

test04.m Tests euclidean03_varsize MEX function
with two-dimensional and three-dimensional
inputs.

Test
script

test05.m Tests euclidean04 MEX function specifying
how many elements of each input to process.

MAT-file euclidean.mat Contains the input data used by the
algorithm.

2-70

MEX Function Generation at the Command Line

Tutorial Steps

• “Copying Files Locally” on page 2-71

• “Running the Original MATLAB Code” on page 2-72

• “Setting Up Your C Compiler” on page 2-75

• “Considerations for Making Your Code Compliant” on page 2-75

• “Making the MATLAB Code Suitable for Code Generation” on page 2-77

• “Generating a MEX Function Using codegen” on page 2-78

• “Validating the MEX Function” on page 2-80

• “Using Build and Test Scripts” on page 2-81

• “Elaborating the Algorithm to Accept Variable-Size Inputs” on page 2-84

• “Specifying Upper Bounds for Local Variables” on page 2-88

Copying Files Locally
Copy the tutorial files to a local solutions folder and create a local working
folder:

1 Create a local solutions folder, for example,
c:\coder\euclidean\solutions.

2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB
command line, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the contents of the euclidean subfolder to your local solutions
folder, specifying the full pathname of the solutions folder:

copyfile('euclidean', 'solutions')

Your solutions folder now contains a complete set of solutions for the
tutorial. If you do not want to perform the steps for each task in the
tutorial, you can view the solutions to see how the code should look.

4 Create a local work folder, for example, c:\coder\euclidean\work.

2-71

2 Tutorials

5 Copy the following files from your solutions folder to your work folder.

• euclidean01.m

• euclidean.mat

• Build files build01.m through build04.m

• Test scripts test01.m through test05.m

Your work folder now contains all the files that you need to get started
with the tutorial.

Running the Original MATLAB Code
In this tutorial, you work with a MATLAB function that implements the
Euclidean distance minimizing algorithm. You make the MATLAB version
of this algorithm suitable for code generation and test the resulting MEX
function to validate the functionality of the modified code. As you work
through the tutorial, you refine the design of the algorithm to accept
variable-size inputs.

Before generating a MEX function, run the original MATLAB function to see
how the Euclidean distance minimizing algorithm works.

1 Set your MATLAB current folder to the work folder that contains your
files for this tutorial.

cd work

work is the full path name of the work folder containing your files. For
more information, see “Using the Current Folder Browser”.

2 Load the euclidean.mat file into your MATLAB workspace.

load euclidean.mat

Your MATLAB workspace now contains:

• A matrix x containing 40000 three-dimensional vectors.

• A matrix cb containing 216 three-dimensional vectors.

2-72

MEX Function Generation at the Command Line

The Euclidean algorithm minimizes the distance between a column vector,
x1, taken from matrix x, and the column vectors in the codebook matrix cb.
It outputs the column vector in cb that is closest to x1.

3 Create a single input vector x1 from the matrix x.

x1=x(:,1)

The result is the first vector from x:

x1 =

0.8568
0.7455
0.3835

4 Use the Euclidean algorithm to find the vector in codebook matrix cb that
is closest to x1. At the MATLAB command line, enter:

[y, idx, distance]=euclidean01(x1,cb)

The Euclidean algorithm runs and plots the lines from x1 to each vector
in cb.

2-73

2 Tutorials

After completing the algorithm, it outputs the coordinates of the point y,
which is the vector in cb closest to x1, together with the index idx of x1 in
cb, and the distance, distance, between y and x1.

y =
0.8000
0.8000
0.4000

idx =
171

distance =
0.0804

The algorithm computes that the point y=0.8000, 0.8000, 0.4000, the
171st vector in cb, is closest to point x1. The distance between y and x1 is
0.0804.

2-74

MEX Function Generation at the Command Line

Where to Go Next. Before continuing with the tutorial, you must set up
your C compiler as detailed in “Setting Up Your C Compiler” on page 2-75.

Setting Up Your C Compiler
If you have not already done so, you must set up your C compiler
before using codegen to compile the Euclidean example code. For most
platforms, MathWorks supplies a default compiler with MATLAB.
If your installation does not include a default compiler, for a list
of supported compilers for the current release of MATLAB, see
http://www.mathworks.com/support/compilers/current_release/ and install a
compiler that is suitable for your platform.

To set up the installed compiler:

1 At the MATLAB command line, enter:

mex -setup

2 Enter y to see the list of installed compilers.

3 Select a supported compiler.

4 Enter y to verify your choice.

Considerations for Making Your Code Compliant

Designing for Code Generation. Before generating code, you must
prepare your MATLAB code for code generation. The first step is to eliminate
unsupported constructs.

Checking for Violations at Design Time. There are two tools that help
you detect code generation issues at design time: the code analyzer and the
code generation readiness tool.

You use the code analyzer in the MATLAB Editor to check for code
violations at design time, minimizing compilation errors. The code analyzer
continuously checks your code as you enter it. It reports problems and
recommends modifications to maximize performance and maintainability.

2-75

2 Tutorials

To use the code analyzer to identify warnings and errors specific to MATLAB
for code generation, you must add the %#codegen directive (or pragma) to
your MATLAB file. A complete list of MATLAB for Code Generation code
analyzer messages is available in the MATLAB Code Analyzer preferences.
See “Running the Code Analyzer Report” for more details.

Note The code analyzer might not detect all MATLAB for code generation
issues. After eliminating any errors or warnings that the code analyzer
detects, compile your code with MATLAB Coder to determine if the code has
other compliance issues.

The code generation readiness tool screens MATLAB code for features and
functions that are not supported for code generation. The tool provides a
report that lists the source files that contain unsupported features and
functions and an indication of how much work is needed to make the MATLAB
code suitable for code generation.

You can access the code generation readiness tool in the following ways:

• In the current folder browser — by right-clicking a MATLAB file

• At the command line — by using the coder.screener function.

• In a project — when you add a MATLAB file to a project, if MATLAB Coder
detects code generation issues, it provides a link to the code generation
readiness report.

Checking for Violations at Code Generation Time. You can use codegen
to check for violations at code generation time. codegen checks that your
MATLAB code is suitable for code generation.

When codegen detects errors or warnings, it automatically generates an error
report that describes the issues and provides links to the offending MATLAB
code. For more information, see “Code Generation Reports”.

After code generation, codegen generates a MEX function that you can use to
test your implementation in MATLAB.

2-76

MEX Function Generation at the Command Line

Checking for Violations at Run Time. You can use codegen to generate
a MEX function and check for violations at run time. In simulation, the
code generated for your MATLAB functions includes the run-time checks.
Disabling run-time checks and extrinsic calls usually results in streamlined
generated code and faster simulation. You control run-time checks using the
MEX configuration object, coder.MexCodeConfig. For more information, see
“Control Run-Time Checks”.

If you encounter run-time errors in your MATLAB functions, a run-time stack
appears automatically in the MATLAB Command Window. See “Debug
Run-Time Errors”.

Where to Go Next. The next section of the tutorial, “Making Your Code
Suitable for Code Generation” on page 2-77, shows you how to use the
MATLAB code analyzer and codegen to make your code suitable for code
generation.

Making the MATLAB Code Suitable for Code Generation

Making Your Code Suitable for Code Generation. To begin the process
of making your MATLAB code suitable for code generation, you work with the
euclidean01.m file. This file is a MATLAB version of a three-dimensional
Euclidean example that plots the distances between an input vector x and
each of the vectors in the codebook matrix cb. It determines which vector in cb
is closest to x, and outputs this vector, its position in cb, and the distance to y.

1 In your work folder, open euclidean01.m in the MATLAB Editor.

edit euclidean01.m

The file opens. The code analyzer message indicator in the top right corner
of the MATLAB Editor is green, which indicates that the code analyzer
has not detected any errors, warnings, or opportunities for improvement
in the code.

2 Turn on code generation error checking by adding the %#codegen
compilation directive after the function declaration.

function [y, idx, distance] = ...
euclidean01(x, cb) %#codegen

2-77

2 Tutorials

The code analyzer message indicator remains green, indicating that it has
not detected any code generation issues.

For more information on using the code analyzer, see “Running the Code
Analyzer Report”.

3 Change the function name to euclidean02 and save the file as
euclidean02.m in the current folder.

You are now ready to compile your code using codegen, which checks that
your code is suitable for code generation. After code generation, codegen
generates a MEX function that you can test in MATLAB.

Generating a MEX Function Using codegen

About codegen. You generate MEX functions using codegen, a function
that compiles MATLAB code to a MEX function. codegen also checks that
your MATLAB code is suitable for code generation.

Using codegen. Because C uses static typing, codegen must determine the
properties of all variables in the MATLAB files at compile time. Therefore,
you must specify the properties of all function inputs at the same time as you
compile the file with codegen. To compile euclidean02.m, you must specify
the size of the input vector x and the codebook matrix cb.

1 Compile the euclidean02.m file.

codegen euclidean02.m -args {x(:,1), cb}

codegen reports the following error, which includes a link to the offending
line of code and a link to an error report:

??? Function 'pause' is not supported for code generation.
Consider adding coder.extrinsic('pause') at the top of the
function to bypass code generation.

Error in ==> euclidean02 Line: 32 Column: 1
Code generation failed: Open error report.
Error using codegen

2-78

MEX Function Generation at the Command Line

Note that:

• By default, codegen generates a MEX function named euclidean02_mex
in the current folder, which allows you to test the original MATLAB code
and the MEX function and compare the results.

• The -args option instructs codegen to compile the file euclidean02.m
using the sample input parameters x(:,1) and cb.

2 Click the euclidean02 Line: 32 Column: 1 link.

The euclidean02.m file opens with the cursor at the offending line of code
in the plot_distances local function.

pause;

Some MATLAB functions such as pause are not supported for code
generation. When you call an unsupported MATLAB function, you must
declare it to be extrinsic so MATLAB can execute it, but codegen does not
try to generate code for it. MATLAB Coder automatically treats common
MATLAB visualization functions, includingline, grid, clf, and axis as
extrinsic, and excludes them from code generation.

3 Declare the function pause extrinsic after the function declaration in the
local function plot_distances:

function plot_distances(x,cb)
% Declare extrinsic function
coder.extrinsic('pause');

4 Save the file, then recompile it.

codegen -report euclidean02.m -args {x(:,1), cb}

This time codegen compiles the file and generates a MEX function
euclidean02_mex in the current folder.

5 At the MATLAB command line, click the link to the code generation report
and then view the MATLAB code for the plot_distances function. The
report highlights the extrinsic functions that are supported only within
the MATLAB environment.

2-79

2 Tutorials

The Euclidean minimum distance example code is now suitable for code
generation. You are ready to begin the next task in this tutorial, “Validating
the MEX Function” on page 2-80.

Validating the MEX Function
In this part of the tutorial, you test the MEX function that you generated
in “Generating a MEX Function Using codegen” on page 2-78 to verify that
it provides the same functionality as the original MATLAB code. You run
the MEX function using the same inputs you used in “Running the Original
MATLAB Code” on page 2-72.

Running the Generated MEX Function.

1 Create a single input vector x1 from the matrix x.

x1=x(:,1)

The result is the first vector in x:

x1 =
0.8568
0.7455
0.3835

2 Use the MEX function euclidean02_mex to find the vector in codebook
matrix cb that is closest to x1.

[y, idx, distance] = euclidean02_mex(x1,cb)

The MEX function runs and plots the lines from x1 to each vector in cb.
After completing the algorithm, it outputs the coordinates of the point y,

2-80

MEX Function Generation at the Command Line

which is the vector in cb closest to x1, together with the index idx of y in
cb, and the distance, distance, between y and x1.

y =
0.8000
0.8000
0.4000

idx =
171

distance =
0.0804

The plots and outputs are identical to those generated with the original
MATLAB function. The MEX function euclidean02_mex is functionally
equivalent to the original MATLAB code in euclidean01.m.

Using Build and Test Scripts
In “Generating a MEX Function Using MATLAB® Coder™” on page 2-19,
you generated a MEX function for your MATLAB code by calling codegen
from the MATLAB command line. In this part of the tutorial, you use a build
script to generate your MEX function and a test script to test it. The first step
is to modify the code in euclidean02.m to move the plotting function to a
separate test script.

Why Use Build Scripts?

A build script automates a series of MATLAB commands that you want to
perform repeatedly from the command line, saving you time and eliminating
input errors.

Why Use Test Scripts?

The euclidean02.m file contains both the Euclidean minimum distance
algorithm and the plot function. It is good practice to separate your core
algorithm from your test bench. This practice allows you to reuse your
algorithm easily. Create a separate test script to do all the pre- and
post-processing such as loading inputs, setting up input values, calling the
function under test, and outputting test results.

2-81

2 Tutorials

Modifying the Code to Remove the Plot Function. In the file
euclidean02.m:

1 Delete the call to plot_distances.

2 Delete the local function plot_distances.

3 Change the function name to euclidean03 and save the file as
euclidean03.m in the current folder.

Using the Build Script build01.m. Next you use the build script build01.m
that compiles euclidean03.m using codegen. This time, use the -report
option, which instructs codegen to generate a code generation report that you
can use to debug your MATLAB code and verify that it is suitable for code
generation.

Contents of Build File build01.m

% Load the test data
load euclidean.mat
% Compile euclidean03.m with codegen
codegen -report euclidean03.m -args {x(:,1), cb}

At the MATLAB command line, enter:

build01

codegen runs and generates a MEX function euclidean03_mex in the current
folder.

You are ready to test the MEX function euclidean03_mex.

Using the Test Script test01.m. You use the test script test01.m to test the
MEX function euclidean03x.

The test script:

• Loads the test data from the file euclidean.mat.

• Runs the original MATLAB file euclidean03.m and plots the distances.

• Runs the MEX function euclidean03_mex and plots the distances.

2-82

MEX Function Generation at the Command Line

Contents of Test Script test01.m

% Load test data
load euclidean.mat
% Take a single input vector from the matrix x
x1=x(:,1);
% Run the original MATLAB function
disp('Running MATLAB function euclidean03');
[y, idx, distance] = euclidean03(x1,cb);
disp(['y = ', num2str(y')]);
disp(['idx = ', num2str(idx)]);
disp(['distance = ', num2str(distance)]);
% Visualize the distance minimization
% plot_distances
clf;
for index=1:size(cb,2)
line([x(1,1) cb(1,index)], [x(2,1) cb(2,index)], ...

[x(3,1) cb(3,index)]);
end
axis([0 1 0 1 0 1]);grid;
pause(.5);
% Run the MEX function euclidean03_mex
disp('Running MEX function euclidean03_mex');
[y, idx, distance] = euclidean03_mex(x1,cb);
disp(['y = ', num2str(y')]);
disp(['idx = ', num2str(idx)]);
disp(['distance = ', num2str(distance)]);
% Visualize the distance minimization
% plot_distances
clf;
for index=1:size(cb,2)
line([x(1,1) cb(1,index)], [x(2,1) cb(2,index)], ...

[x(3,1) cb(3,index)]);
end
axis([0 1 0 1 0 1]);grid;
pause(.5);

Running the Test Script. At the MATLAB command line, enter:

test01

2-83

2 Tutorials

The test file runs, plots the lines from x1 to each vector in cb, and outputs:

Running MATLAB function euclidean03
y = 0.8 0.8 0.4
idx = 171
distance = 0.080374
Running MEX function euclidean03_mex
y = 0.8 0.8 0.4
idx = 171
distance = 0.080374

The outputs for the original MATLAB code and the MEX function are
identical.

You are now ready to begin the next task in this tutorial, “Elaborating the
Algorithm to Accept Variable-Size Inputs” on page 2-84.

Elaborating the Algorithm to Accept Variable-Size Inputs

Why Modify the Algorithm?. The algorithm you have used so far in
this tutorial is suitable only to process inputs whose dimensions match the
dimensions of the example inputs provided using the -args option. In this
part of the tutorial, you run euclidean03_mex to see that it does not accept
two-dimensional inputs. You then recompile your code using two-dimensional
example inputs and test the resulting MEX function with the two-dimensional
inputs.

About the Build and Test Scripts.

Contents of test02.m

This test script creates two-dimensional inputs x2 and cb2, then calls
euclidean03_mex using these input parameters. You run this test script to
see that your existing algorithm does not accept two-dimensional inputs.

% Load the test data
load euclidean.mat

% Create 2-D versions of x and cb
x2=x(1:2,:);

2-84

MEX Function Generation at the Command Line

x2d=x2(:,47);
cb2d=cb(1:2,1:6:216);

% Run euclidean03_mex with these 2-D inputs
disp('Attempting to run euclidean03_mex with 2-D inputs');
[y, idx, distance] = euclidean03_mex(x2d,cb2d);

Contents of build02.m

This build file creates two-dimensional example inputs x2d and cb2d then
uses these inputs to compile euclidean03.m.

% Load the test data
load euclidean.mat
% Create 2-D versions of x and cb
x2=x(1:2,:);
x2d=x2(:,47);
cb2d=cb(1:2,1:6:216);
% Recompile euclidean03 with 2-D example inputs
% The -o option instructs codegen to name the MEX function euclidean03_2d
disp('Recompiling euclidean03.m with 2-D example inputs');
codegen -o euclidean03_2d -report euclidean03.m -args {x2d, cb2d};

Contents of test03.m

This test script runs the MEX function euclidean03_2d with two-dimensional
inputs.

% Load input data
load euclidean.mat
% Create 2-D versions of x and cb
x2=x(1:2,:);
x2d=x2(:,47);
cb2d=cb(1:2,1:6:216);
% Run new 2-D version of euclidean03
disp('Running new 2-D version of MEX function');
[y, idx, distance] = euclidean03_2d(x2d, cb2d);
disp(['y = ', num2str(y')]);
disp(['idx = ', num2str(idx)]);
disp(['distance = ', num2str(distance)]);

2-85

2 Tutorials

Running the Build and Test Scripts.

1 Run the test script test02.m to test euclidean03x with two-dimensional
inputs.

test02

MATLAB reports an error indicating that the MEX function does not
accept two-dimensional variables for the input cb.

??? MATLAB expression 'x' is not of the correct size:
expected [3x1] found [2x1].

Error in ==> euclidean03

To process two-dimensional inputs, you must recompile your code providing
two-dimensional example inputs.

2 Run the build file build02.m to recompile euclidean03.m with
two-dimensional inputs.

build02

codegen compiles the file and generates a MEX function euclidean03_2d
in the current folder.

3 Run the test file test03.m to run the resulting MEX function
euclidean03_2d with two-dimensional inputs.

At the MATLAB command line, enter:

test03

This time, the MEX function runs and outputs the vector y in matrix cb
that is closest to x2d in two dimensions.

Running new 2-D version of MEX function
y = 0 0.4
idx = 3
distance = 0.053094

2-86

MEX Function Generation at the Command Line

This part of the tutorial demonstrates how to create MEX functions to handle
inputs with different dimensions. Using this approach, you would need a
library of MEX functions, each one suitable only for inputs with specified data
types, dimensions, and complexity. Alternatively, you can modify your code
to accept variable-size inputs. To learn how, see “Specifying Variable-Size
Inputs” on page 2-87.

Specifying Variable-Size Inputs. The original MATLAB function is
suitable for inputs of any data type, dimensions, and complexity. To provide
this same flexibility in your generated C code, use coder.typeof with the
codegen -args command-line option.

coder.typeof(a,b,1) specifies a variable-size input with the same class and
complexity as a and same size and upper bounds as the size vector b. For
more information, see “Specify Variable-Size Inputs at the Command Line”.

1 Compile this code using the build file build03.m. This build file uses
coder.typeof to specify variable-size inputs to the euclidean03 function.

build03

codegen compiles the file without warnings or errors and generates a MEX
function euclidean03_varsizex in the current folder.

2 Run the resulting MEX function with two-dimensional and then
three-dimensional inputs using the test file test04.m.

At the MATLAB command line, enter:

test04

The test file runs and outputs:

Running euclidean03_varsizex with 2-D inputs
y = 0 0.4
idx = 3
distance = 0.053094
Running euclidean04_varsizex with 3-D inputs
y = 0.6 0.8 0.2
idx = 134
distance = 0.053631

2-87

2 Tutorials

You have created an algorithm that accepts variable-size inputs.

Specifying Upper Bounds for Local Variables
In this part of the tutorial, you modify the algorithm to compute only the
distance between the first N elements of a given vector x and the first N
elements of every column vector in the matrix cb.

To modify the Euclidean minimum distance algorithm, euclidean03.m, to
accommodate changes in dimensions over which to compute the distances:

1 Provide a new input parameter, N, to specify the number of elements to
consider. The new function signature is:

function [y,idx,distance] = euclidean03(x,cb,N)

2 Specify an upper bound for the variable N using assert. Add this line after
the function declaration.

assert(N<=3);

The value of the upper bound must correspond to the maximum number of
dimensions of matrix cb. If you do not specify an upper bound, an array
bounds error occurs if you run the MEX function with a value for N that
exceeds the number of dimensions of matrix cb. For more information, see
“Specifying Upper Bounds for Variable-Size Data”.

3 Modify the line of code that calculates the initial distance to use N. Replace
the line:

distance=norm(x-cb(:,1));

with:

distance=norm(x(1:N)-cb(1:N,1));

4 Modify the line of code that calculates each successive distance to use N.
Replace the line:

d=norm(x-cb(:,index));

with:

2-88

MEX Function Generation at the Command Line

d=norm(x(1:N)-cb(1:N,index));

5 Change the function name to euclidean04 and save the file as
euclidean04.m in the current folder.

6 Compile this code using the build file build04.m.

At the MATLAB command line, enter:

build04

codegen compiles the file without warnings or errors and generates a MEX
function euclidean04x in the current folder.

7 Run the resulting MEX function to process the first two elements of the
inputs x and cb , then to process all three elements of these inputs. Use
the test file test05.m.

At the MATLAB command line, enter:

test05

The test file runs and outputs:

Running euclidean04_mex for first two elements of inputs x and cb
y = 0.8 0.8 0
idx = 169
distance = 0.078672
Running eucidean04_mex for three elements of inputs x and cb
y = 0.8 0.8 0.4
idx = 171
distance = 0.080374

Key Points to Remember

• Back up your MATLAB code before you modify it.

• Decide on a naming convention for your files and save interim versions
frequently. For example, this tutorial uses a two-digit suffix to differentiate
the various versions of the filter algorithm.

• Use build scripts to build your files.

2-89

2 Tutorials

• Use test scripts to separate the pre- and post-processing from the core
algorithm.

• Use the -args option to specify input parameters at the command line.

• Use the MATLAB assert function to specify the upper bounds of
variable-size data.

• Use the -report option to create a code generation report.

• Use coder.typeof(a,b,1) to specify variable-size inputs.

Best Practices Used in This Tutorial

Best Practice — Preserving Your Code
Preserve your code before making further modifications. This practice
provides a fallback in case of error and a baseline for testing and validation.
Use a consistent file naming convention. For example, add a 2-digit suffix to
the file name for each file in a sequence.

Where to Learn More

• “Next Steps” on page 2-90

• “Product Help” on page 2-91

• “MathWorks Online” on page 2-91

Next Steps
To... See...

Learn how to generate C code from your
MATLAB code

“C Code Generation at the Command Line” on
page 2-35

Learn how to integrate your MATLAB code
with Simulink models

“Track Object Using MATLAB Code”

Learn more about using code generation from
MATLAB

“MATLAB Algorithm Design”

Use variable-size data “Variable-Size Data Definition for Code
Generation”

2-90

MEX Function Generation at the Command Line

To... See...

Speed up fixed-point MATLAB code fiaccel

Integrate custom C code into MATLAB code
and generate embeddable code

“Custom C/C++ Code Integration”

Integrate custom C code into a MATLAB
function

coder.ceval

Generate HDL from MATLAB code www.mathworks.com/products/slhdlcoder

Product Help
MathWorks product documentation is available online from the Help menu on
the MATLAB desktop.

MathWorks Online
For additional information and support, visit the MATLAB Coder page on
the MathWorks Web site at:

www.mathworks.com/products/featured/matlab-coder

2-91

http://www.mathworks.com/products/slhdlcoder/
http://www.mathworks.com/products/matlab-coder/

2 Tutorials

2-92

3

Best Practices for Working
with MATLAB Coder

• “Recommended Compilation Options for codegen” on page 3-2

• “Testing MEX Functions in MATLAB” on page 3-3

• “Comparing C Code and MATLAB Code Using Tiling in the MATLAB
Editor” on page 3-4

• “Using Build Scripts” on page 3-5

• “Check Code Using the MATLAB Code Analyzer” on page 3-7

• “Separating Your Test Bench from Your Function Code” on page 3-8

• “Preserving Your Code” on page 3-9

• “File Naming Conventions” on page 3-10

3 Best Practices for Working with MATLAB Coder

Recommended Compilation Options for codegen

In this section...

“-c Generate Code Only” on page 3-2

“-report Generate Code Generation Report” on page 3-2

-c Generate Code Only
Use the -c option to generate code only without invoking the make command.
If this option is used, codegen does not generate compiled object code. This
option saves you time during the development cycle when you want to iterate
rapidly between modifying MATLAB code and generating C code and are
mainly interested in inspecting the C code.

For more information and a complete list of compilation options, see codegen.

-report Generate Code Generation Report
Use the -report option to generate a code generation report in HTML format
at compile time to help you debug your MATLAB code and verify that it is
suitable for code generation. If the -report option is not specified, codegen
generates a report only if compilation errors or warnings occur.

The code generation report contains the following information:

• Summary of compilation results, including type of target and number of
warnings or errors

• Target build log that records compilation and linking activities

• Links to generated files

• Error and warning messages (if any)

For more information, see codegen.

3-2

Testing MEX Functions in MATLAB®

Testing MEX Functions in MATLAB
To prepare your MATLAB code before you generate C code, use codegen
to convert your MATLAB code to a MEX function. codegen generates a
platform-specific MEX-file, which you can execute within the MATLAB
environment to test your algorithm.

For more information, see codegen.

3-3

3 Best Practices for Working with MATLAB Coder

Comparing C Code and MATLAB Code Using Tiling in the
MATLAB Editor

Use the MATLAB Editor’s left/right tile feature to compare your generated C
code to the original MATLAB code. You can easily compare the generated C
code to your original MATLAB code. In the generated C code:

• Your function name is unchanged.

• Your comments are preserved in the same position.

To compare two files, follow these steps:

1 Open the C file and the MATLAB file in the Editor. (Dock both windows if
they are not docked.)

2 Select Window > Left/Right Tile (or the toolbar button) to view
the files side by side.

The MATLAB file kalman02.m and its generated C code kalman02.c are
displayed in the following figure.

3-4

Using Build Scripts

Using Build Scripts
If you use codegen to generate code from the command line, use build scripts
to call codegen to generate MEX functions from your MATLAB function.

A build script automates a series of MATLAB commands that you want to
perform repeatedly from the command line, saving you time and eliminating
input errors. For instance, you can use a build script to clear your workspace
before each build and to specify code generation options.

Here is an example of a build script to run codegen to process lms_02.m:

close all;
clear all;
clc;

N = 73113;

codegen -report lms_02.m ...
-args { zeros(N,1) zeros(N,1) }

where:

• close all deletes all figures whose handles are not hidden. See close in
the MATLAB Graphics function reference for more information.

• clear all removes all variables, functions, and MEX-files from memory,
leaving the workspace empty. It also clears all breakpoints.

Note Remove the clear all command from the build scripts if you want
to preserve breakpoints for debugging.

• clc clears all input and output from the Command Window display, giving
you a “clean screen.”

• N = 73113 sets the value of the variable N, which represents the number of
samples in each of the two input parameters for the function lms_02

• codegen -report lms_02.m -args { zeros(N,1) zeros(N,1) } calls
codegen to generate C code for file lms_02.m using the following options:

3-5

3 Best Practices for Working with MATLAB Coder

- -report generates a code generation report

- -args { zeros(N,1) zeros(N,1) } specifies the properties of the
function inputs as a cell array of example values. In this case, the input
parameters are N-by-1 vectors of real doubles.

3-6

Check Code Using the MATLAB® Code Analyzer

Check Code Using the MATLAB Code Analyzer
The code analyzer checks your code for problems and recommends
modifications to maximize performance and maintainability. You can use
the code analyzer to check your code interactively in the MATLAB Editor
while you work.

To verify that continuous code checking is enabled:

1 In MATLAB, select the Home tab and then click Preferences.

2 In the Preferences dialog box, select Code Analyzer.

3 In the Code Analyzer Preferences pane, verify that Enable integrated
warning and error messages is selected.

3-7

3 Best Practices for Working with MATLAB Coder

Separating Your Test Bench from Your Function Code
If you use codegen to generate code from the command line, separate your
core algorithm from your test bench. Create a separate test script to do all
the pre- and post-processing such as loading inputs, setting up input values,
calling the function under test, and outputting test results.

3-8

Preserving Your Code

Preserving Your Code
Preserve your code before making further modifications. This practice
provides a fallback in case of error and a baseline for testing and validation.
Use a consistent file naming convention. For example, add a 2-digit suffix to
the file name for each file in a sequence. See “File Naming Conventions” on
page 3-10 for more details.

3-9

3 Best Practices for Working with MATLAB Coder

File Naming Conventions
Use a consistent file naming convention to identify different types and
versions of your MATLAB files. This approach keeps your files organized
and minimizes the risk of overwriting existing files or creating two files with
the same name in different folders.

For example, the file naming convention in the Generating MEX Functions
getting started tutorial is:

• The suffix _build identifies a build script.

• The suffix _test identifies a test script.

• A numerical suffix, for example, _01 identifies the version of a file. These
numbers are typically two-digit sequential integers, beginning with 01,
02, 03, and so on.

For example:

• The file build_01.m is the first version of the build script for this tutorial.

• The file test_03.m is the third version of the test script for this tutorial.

3-10

A

Examples

Use this list to find examples in the documentation.

A Examples

Getting Started
“C Code Generation Using the Project Interface” on page 2-2
“C Code Generation at the Command Line” on page 2-35
“MEX Function Generation at the Command Line” on page 2-66

A-2

Index

IndexC
C compiler

set up for codegen 2-75
set up for MATLAB Coder 2-12 2-45

code generation from MATLAB
best practices

comparing files 2-64
separating test bench from function

code 3-8
code generation readiness 2-13 2-46 2-75
codegen

C compiler set up 2-75
getting started tutorial prerequisites 2-35

2-66
recommended compilation options 3-2

D
design considerations

when writing MATLAB Code for code
generation 2-7 2-41

M
MATLAB code

designing for code generation 2-13 2-46 2-75

MATLAB code analyzer
using withMATLAB for code generation 2-13

2-46 2-75
MATLAB Coder

best practices
generate C code only 3-2
generate code generation report 3-2
preserving your code 3-9
testing MEX functions in MATLAB 3-3
using build scripts 3-5
using file naming convention 3-10
using the MATLAB code analyzer 3-7

C compiler set up 2-12 2-45
generating C code 2-21
getting started tutorial prerequisites 2-2
recommended compilation options for

codegen 3-2
using codegen 2-52

MATLAB for code generation
using the MATLAB code analyzer 2-13 2-46

2-75

U
using codegen 2-77

Index-1

	toc
	Check Bug Reports for Issues and Fixes
	Product Overview
	Product Description
	Key Features

	About MATLAB Coder
	When to Use MATLAB Coder
	What You Can Do with the Project Interface
	See Also

	When to Use the Command Line (codegen function)
	See Also

	Code Generation for Embedded Software Applications
	Code Generation for Fixed-Point Algorithms
	Installing Prerequisite Products
	Related Products
	Setting Up the C/C++ Compiler
	Expected Background
	Workflow Overview
	See Also

	Tutorials
	C Code Generation Using the Project Interface
	Learning Objectives
	Tutorial Prerequisites
	What You Need to Know
	Required Products

	Example: The Kalman Filter
	Description
	Algorithm
	Filtering Process
	Reference

	Files for the Tutorial
	About the Tutorial Files
	Location of Files
	Names and Descriptions of Files

	Design Considerations When Writing MATLAB Code for Code Generati
	See Also

	Tutorial Steps
	Copying Files Locally
	Running the Original MATLAB Code
	Setting Up Your C Compiler
	Considerations for Making Your Code Suitable for Code Generation
	Making the MATLAB Code Suitable for Code Generation
	Setting Up a MATLAB Coder Project
	Generating a MEX Function Using MATLAB Coder
	Verifying the MEX Function Behavior
	Generating C Code Using MATLAB Coder
	Comparing the Generated C Code to Original MATLAB Code
	Modifying the Filter to Accept a Fixed-Size Input
	Why Preallocate the Outputs?
	Contents of test02_ui.m

	Using the Filter to Accept a Variable-Size Input

	Key Points to Remember
	Learn More
	Next Steps
	Product Help
	MathWorks Online

	C Code Generation at the Command Line
	Learning Objectives
	Tutorial Prerequisites
	What You Need to Know
	Required Products

	Example: The Kalman Filter
	Description
	Algorithm
	Filtering Process
	Reference

	Files for the Tutorial
	About the Tutorial Files
	Location of Files
	Names and Descriptions of Files

	Design Considerations When Writing MATLAB Code for Code Generati
	See Also

	Tutorial Steps
	Copying Files Locally
	Running the Original MATLAB Code
	Setting Up Your C Compiler
	Considerations for Making Your Code Suitable for Code Generation
	Making the MATLAB Code Suitable for Code Generation
	Generating a MEX Function Using codegen
	Verifying the MEX Function
	Contents of test02.m

	Generating C Code Using codegen
	Comparing the Generated C Code to Original MATLAB Code
	Modifying the Filter to Accept a Fixed-Size Input
	Why Preallocate the Outputs?
	Contents of build03.m

	Modifying the Filter to Accept a Variable-Size Input
	Testing the Algorithm with Variable-Size Inputs
	Generating C Code for a Variable-Size Input
	Contents of build04.m

	Key Points to Remember
	Best Practices Used in This Tutorial
	Best Practice — Preserving Your Code
	Best Practice — Comparing Files
	Best Practice — Using Build Scripts
	Best Practice — Separating Your Test Bench from Your Function Co
	Where to Learn More
	Next Steps
	Product Help
	MathWorks Online

	MEX Function Generation at the Command Line
	Learning Objectives
	Tutorial Prerequisites
	What You Need to Know
	Required Products

	Example: Euclidean Minimum Distance
	Description
	Algorithm

	Files for the Tutorial
	About the Tutorial Files
	Location of Files
	Names and Descriptions of Files

	Tutorial Steps
	Copying Files Locally
	Running the Original MATLAB Code
	Setting Up Your C Compiler
	Considerations for Making Your Code Compliant
	Making the MATLAB Code Suitable for Code Generation
	Generating a MEX Function Using codegen
	Validating the MEX Function
	Using Build and Test Scripts
	Why Use Build Scripts?
	Why Use Test Scripts?
	Contents of Build File build01.m
	Contents of Test Script test01.m

	Elaborating the Algorithm to Accept Variable-Size Inputs
	Contents of test02.m
	Contents of build02.m
	Contents of test03.m

	Specifying Upper Bounds for Local Variables

	Key Points to Remember
	Best Practices Used in This Tutorial
	Best Practice — Preserving Your Code
	Where to Learn More
	Next Steps
	Product Help
	MathWorks Online

	Best Practices for Working with MATLAB Coder
	Recommended Compilation Options for codegen
	-c Generate Code Only
	-report Generate Code Generation Report

	Testing MEX Functions in MATLAB
	Comparing C Code and MATLAB Code Using Tiling in the MATLAB Edit
	Using Build Scripts
	Check Code Using the MATLAB Code Analyzer
	Separating Your Test Bench from Your Function Code
	Preserving Your Code
	File Naming Conventions

	Examples
	Getting Started

	Index

